These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15946639)

  • 1. The role of CO2 in cobalt-catalyzed peroxidations.
    Liochev SI; Fridovich I
    Arch Biochem Biophys; 2005 Jul; 439(1):99-104. PubMed ID: 15946639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of CO2 in metal-catalyzed peroxidations.
    Liochev SI; Fridovich I
    J Inorg Biochem; 2006 Apr; 100(4):694-6. PubMed ID: 16500710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide mediates Mn(II)-catalyzed decomposition of hydrogen peroxide and peroxidation reactions.
    Liochev SI; Fridovich I
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12485-90. PubMed ID: 15310847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and mechanism of peroxymonocarbonate formation.
    Bakhmutova-Albert EV; Yao H; Denevan DE; Richardson DE
    Inorg Chem; 2010 Dec; 49(24):11287-96. PubMed ID: 21077618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II.
    Elder I; Tu C; Ming LJ; McKenna R; Silverman DN
    Arch Biochem Biophys; 2005 May; 437(1):106-14. PubMed ID: 15820222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO2, not HCO3-, facilitates oxidations by Cu,Zn superoxide dismutase plus H2O2.
    Liochev SI; Fridovich I
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):743-4. PubMed ID: 14711995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of the role of Gln-158 in the mechanism of CO(2) hydration catalyzed by beta-carbonic anhydrase from Arabidopsis thaliana.
    Rowlett RS; Tu C; Murray PS; Chamberlin JE
    Arch Biochem Biophys; 2004 May; 425(1):25-32. PubMed ID: 15081890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient two-electron reduction of dioxygen to hydrogen peroxide with one-electron reductants with a small overpotential catalyzed by a cobalt chlorin complex.
    Mase K; Ohkubo K; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2800-8. PubMed ID: 23343346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen.
    Kadish KM; Shen J; Frémond L; Chen P; El Ojaimi M; Chkounda M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S; Guilard R
    Inorg Chem; 2008 Aug; 47(15):6726-37. PubMed ID: 18582035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.
    Chaliha S; Bhattacharyya KG
    J Hazard Mater; 2008 Feb; 150(3):728-36. PubMed ID: 17574332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleophilic reaction by carbonic anhydrase model zinc compound: characterization of intermediates for CO2 hydration and phosphoester hydrolysis.
    Echizen T; Ibrahim MM; Nakata K; Izumi M; Ichikawa K; Shiro M
    J Inorg Biochem; 2004 Aug; 98(8):1347-60. PubMed ID: 15271511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst.
    Ren WM; Liu ZW; Wen YQ; Zhang R; Lu XB
    J Am Chem Soc; 2009 Aug; 131(32):11509-18. PubMed ID: 19624164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Borate-catalyzed carbon dioxide hydration via the carbonic anhydrase mechanism.
    Guo D; Thee H; da Silva G; Chen J; Fei W; Kentish S; Stevens GW
    Environ Sci Technol; 2011 Jun; 45(11):4802-7. PubMed ID: 21534585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles.
    Leung K; Nielsen IM; Sai N; Medforth C; Shelnutt JA
    J Phys Chem A; 2010 Sep; 114(37):10174-84. PubMed ID: 20726563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and chemiluminescence of catechol by hydrogen peroxide in the presence of Co(II) ions and CTAB micelles.
    Lasovsky J; Hrbac J; Sichertova D; Bednar P
    Luminescence; 2007; 22(5):501-6. PubMed ID: 17768713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts.
    Schneider J; Jia H; Muckerman JT; Fujita E
    Chem Soc Rev; 2012 Mar; 41(6):2036-51. PubMed ID: 22167246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0-14: the thermodynamic basis for catalyst structure, stability, and activity.
    Gerken JB; McAlpin JG; Chen JY; Rigsby ML; Casey WH; Britt RD; Stahl SS
    J Am Chem Soc; 2011 Sep; 133(36):14431-42. PubMed ID: 21806043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique.
    El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS
    J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.