These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15946676)

  • 1. Calcium transport in cardiovascular health and disease--the sarcolemmal calcium pump enters the stage.
    Cartwright EJ; Schuh K; Neyses L
    J Mol Cell Cardiol; 2005 Sep; 39(3):403-6. PubMed ID: 15946676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase.
    Mackiewicz U; Lewartowski B
    J Physiol Pharmacol; 2006 Mar; 57(1):3-15. PubMed ID: 16601311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Calcium-transporting systems and calcium regulation in cardiomyocytes].
    Aleksandrova EA
    Usp Fiziol Nauk; 2001; 32(3):40-8. PubMed ID: 11565424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition and redistribution among calcium transport systems in rabbit cardiac myocytes.
    Bers DM; Bassani JW; Bassani RA
    Cardiovasc Res; 1993 Oct; 27(10):1772-7. PubMed ID: 8275522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
    Maltsev VA; Lakatta EG
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H594-615. PubMed ID: 19136600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac excitation-contraction coupling in the absence of Na(+) - Ca2+ exchange.
    Reuter H; Henderson SA; Han T; Mottino GA; Frank JS; Ross RS; Goldhaber JI; Philipson KD
    Cell Calcium; 2003 Jul; 34(1):19-26. PubMed ID: 12767889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium accumulation promotes diastolic dysfunction in end-stage heart failure following Serca2 knockout.
    Louch WE; Hougen K; Mørk HK; Swift F; Aronsen JM; Sjaastad I; Reims HM; Roald B; Andersson KB; Christensen G; Sejersted OM
    J Physiol; 2010 Feb; 588(Pt 3):465-78. PubMed ID: 20008467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of vascular tone in animals overexpressing the sarcolemmal calcium pump.
    Schuh K; Quaschning T; Knauer S; Hu K; Kocak S; Roethlein N; Neyses L
    J Biol Chem; 2003 Oct; 278(42):41246-52. PubMed ID: 12900399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiac myocytes.
    Weber CR; Ginsburg KS; Philipson KD; Shannon TR; Bers DM
    J Gen Physiol; 2001 Feb; 117(2):119-31. PubMed ID: 11158165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation in ferret ventricular myocytes: role of the sarcolemmal Ca ATPase.
    Bassani RA; Bassani JW; Bers DM
    Pflugers Arch; 1995 Aug; 430(4):573-8. PubMed ID: 7491284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of frog heart sarcolemma possessing (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities.
    Morcos NC
    Biochim Biophys Acta; 1981 Apr; 643(1):55-62. PubMed ID: 6113007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased SR Ca2+ cycling contributes to improved contractile performance in SERCA2a-overexpressing transgenic rats.
    Maier LS; Wahl-Schott C; Horn W; Weichert S; Pagel C; Wagner S; Dybkova N; Müller OJ; Näbauer M; Franz WM; Pieske B
    Cardiovasc Res; 2005 Sep; 67(4):636-46. PubMed ID: 15932750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plasma membrane Ca²+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium.
    Brini M; Carafoli E
    Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes.
    Weisser-Thomas J; Kubo H; Hefner CA; Gaughan JP; McGowan BS; Ross R; Meyer M; Dillmann W; Houser SR
    J Card Fail; 2005 Jun; 11(5):380-7. PubMed ID: 15948089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats.
    Dixon IM; Hata T; Dhalla NS
    Am J Physiol; 1992 May; 262(5 Pt 2):H1387-94. PubMed ID: 1317126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the (Ca2+ + Mg2+)-ATPase activity and calcium transport in reconstituted cardiac sarcolemmal vesicles. Effect of sodium and potassium.
    Mas-Oliva J
    Cell Calcium; 1982 May; 3(2):113-29. PubMed ID: 6126276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle.
    Bers DM; Bassani JW; Bassani RA
    Ann N Y Acad Sci; 1996 Apr; 779():430-42. PubMed ID: 8659859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered sarcolemmal calcium channel density and Ca(2+)-pump ATPase activity in tachycardia heart failure.
    Colston JT; Kumar P; Chambers JP; Freeman GL
    Cell Calcium; 1994 Nov; 16(5):349-56. PubMed ID: 7859249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between mechanical dysfunction and depression of sarcolemmal Ca(2+)-pump activity in hearts perfused with oxygen free radicals.
    Matsubara T; Dhalla NS
    Mol Cell Biochem; 1996; 160-161():179-85. PubMed ID: 8901472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.