BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15946681)

  • 1. Hydroxyl groups in the (beta)beta sandwich of metallo-beta-lactamases favor enzyme activity: a computational protein design study.
    Oelschlaeger P; Mayo SL
    J Mol Biol; 2005 Jul; 350(3):395-401. PubMed ID: 15946681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid.
    Oelschlaeger P; Pleiss J
    J Mol Biol; 2007 Feb; 366(1):316-29. PubMed ID: 17157873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling domino effects in enzymes: molecular basis of the substrate specificity of the bacterial metallo-beta-lactamases IMP-1 and IMP-6.
    Oelschlaeger P; Schmid RD; Pleiss J
    Biochemistry; 2003 Aug; 42(30):8945-56. PubMed ID: 12885227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of remote mutations on metallo-beta-lactamase substrate specificity: implications for the evolution of antibiotic resistance.
    Oelschlaeger P; Mayo SL; Pleiss J
    Protein Sci; 2005 Mar; 14(3):765-74. PubMed ID: 15722450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z; Rasmussen BA; Herzberg O
    Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis.
    Wang Z; Fast W; Benkovic SJ
    Biochemistry; 1999 Aug; 38(31):10013-23. PubMed ID: 10433708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An engineered disulfide bond between residues 69 and 238 in extended-spectrum beta-lactamase Toho-1 reduces its activity toward third-generation cephalosporins.
    Shimizu-Ibuka A; Matsuzawa H; Sakai H
    Biochemistry; 2004 Dec; 43(50):15737-45. PubMed ID: 15595829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protonation state of Asp120 in the binuclear active site of the metallo-beta-lactamase from Bacteroides fragilis.
    Dal Peraro M; Vila AJ; Carloni P
    Inorg Chem; 2003 Jul; 42(14):4245-7. PubMed ID: 12844290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Role of Residue 67 in IMP-Type Metallo-β-Lactamase Evolution.
    LaCuran AE; Pegg KM; Liu EM; Bethel CR; Ai N; Welsh WJ; Bonomo RA; Oelschlaeger P
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7299-307. PubMed ID: 26369960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based computational study of the hydrolysis of New Delhi metallo-β-lactmase-1.
    Zhu K; Lu J; Ye F; Jin L; Kong X; Liang Z; Chen Y; Yu K; Jiang H; Li JQ; Luo C
    Biochem Biophys Res Commun; 2013 Feb; 431(1):2-7. PubMed ID: 23313491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanism of resistance to third-generation cephalosporins by class C beta-lactamases by using chemical complementation.
    Carter BT; Lin H; Goldberg SD; Althoff EA; Raushel J; Cornish VW
    Chembiochem; 2005 Nov; 6(11):2055-67. PubMed ID: 16250067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria.
    Crowder MW; Spencer J; Vila AJ
    Acc Chem Res; 2006 Oct; 39(10):721-8. PubMed ID: 17042472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases.
    Murphy TA; Catto LE; Halford SE; Hadfield AT; Minor W; Walsh TR; Spencer J
    J Mol Biol; 2006 Mar; 357(3):890-903. PubMed ID: 16460758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M; Vila AJ; Carloni P
    Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between catalytic efficiency and the transcription read-out in chemical complementation: a general assay for enzyme catalysis.
    Sengupta D; Lin H; Goldberg SD; Mahal JJ; Cornish VW
    Biochemistry; 2004 Mar; 43(12):3570-81. PubMed ID: 15035627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
    Antony J; Gresh N; Olsen L; Hemmingsen L; Schofield CJ; Bauer R
    J Comput Chem; 2002 Oct; 23(13):1281-96. PubMed ID: 12210153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.