BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15946697)

  • 1. Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation.
    Perrotta C; De Palma C; Falcone S; Sciorati C; Clementi E
    Life Sci; 2005 Aug; 77(14):1732-9. PubMed ID: 15946697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and sphingolipids: mechanisms of interaction and role in cellular pathophysiology.
    Perrotta C; De Palma C; Clementi E
    Biol Chem; 2008 Nov; 389(11):1391-7. PubMed ID: 18783333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological roles of Acid and neutral sphingomyelinases and their regulation by nitric oxide.
    Perrotta C; Clementi E
    Physiology (Bethesda); 2010 Apr; 25(2):64-71. PubMed ID: 20430951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cellular system to study the role of nitric oxide in cell death, survival, and migration.
    Bulotta S; Perrotta C; Cerullo A; De Palma C; Clementi E; Borgese N
    Neurotoxicology; 2005 Oct; 26(5):841-5. PubMed ID: 15894375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Sphingolipid-mediated apoptotic signaling pathways].
    Cuvillier O; Andrieu-Abadie N; Ségui B; Malagarie-Cazenave S; Tardy C; Bonhoure E; Levade T
    J Soc Biol; 2003; 197(3):217-21. PubMed ID: 14708343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic GMP-dependent inhibition of acid sphingomyelinase by nitric oxide: an early step in protection against apoptosis.
    Barsacchi R; Perrotta C; Sestili P; Cantoni O; Moncada S; Clementi E
    Cell Death Differ; 2002 Nov; 9(11):1248-55. PubMed ID: 12404124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells.
    Sanvicens N; Cotter TG
    J Neurochem; 2006 Sep; 98(5):1432-44. PubMed ID: 16923157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide regulates synthesis of gene products involved in keratinocyte differentiation and ceramide metabolism.
    Gallala H; Macheleidt O; Doering T; Schreiner V; Sandhoff K
    Eur J Cell Biol; 2004 Dec; 83(11-12):667-79. PubMed ID: 15679111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingolipid metabolites in neural signalling and function.
    Colombaioni L; Garcia-Gil M
    Brain Res Brain Res Rev; 2004 Nov; 46(3):328-55. PubMed ID: 15571774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the nitric oxide signaling system with the sphingomyelin cycle and peroxidation on transmission of toxic signal of tumor necrosis factor-α in ischemia-reperfusion.
    Shupik MA; Vanin AF; Alessenko AV
    Biochemistry (Mosc); 2011 Nov; 76(11):1197-209. PubMed ID: 22117546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide: a new player in plant signalling and defence responses.
    Wendehenne D; Durner J; Klessig DF
    Curr Opin Plant Biol; 2004 Aug; 7(4):449-55. PubMed ID: 15231269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between nitric oxide and sphingolipids and the potential consequences in physiology and pathology.
    Clementi E; Borgese N; Meldolesi J
    Trends Pharmacol Sci; 2003 Oct; 24(10):518-23. PubMed ID: 14559403
    [No Abstract]   [Full Text] [Related]  

  • 13. N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide.
    Rakshit S; Bagchi J; Mandal L; Paul K; Ganguly D; Bhattacharjee S; Ghosh M; Biswas N; Chaudhuri U; Bandyopadhyay S
    Apoptosis; 2009 Mar; 14(3):298-308. PubMed ID: 19153832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium.
    De Palma C; Meacci E; Perrotta C; Bruni P; Clementi E
    Arterioscler Thromb Vasc Biol; 2006 Jan; 26(1):99-105. PubMed ID: 16269668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ceramide-induced cell death in malignant cells.
    Carpinteiro A; Dumitru C; Schenck M; Gulbins E
    Cancer Lett; 2008 Jun; 264(1):1-10. PubMed ID: 18353542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of lipid rafts in ceramide and nitric oxide signaling in the ischemic and preconditioned hearts.
    Der P; Cui J; Das DK
    J Mol Cell Cardiol; 2006 Feb; 40(2):313-20. PubMed ID: 16337960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for nitric oxide-dependent protein-protein interactions.
    Matsumoto A; Comatas KE; Liu L; Stamler JS
    Science; 2003 Aug; 301(5633):657-61. PubMed ID: 12893946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue.
    Yang GY; Taboada S; Liao J
    Methods Mol Biol; 2009; 512():119-56. PubMed ID: 19347276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-apoptotic and anti-oxidative mechanisms of minocycline against sphingomyelinase/ceramide neurotoxicity: implication in Alzheimer's disease and cerebral ischemia.
    Chen SD; Yin JH; Hwang CS; Tang CM; Yang DI
    Free Radic Res; 2012 Aug; 46(8):940-50. PubMed ID: 22583533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-1beta-induced iNOS expression, NO release and loss in metabolic cell viability are resistant to inhibitors of ceramide synthase and sphingomyelinase in INS 832/13 cells.
    Veluthakal R; Jangati GR; Kowluru A
    JOP; 2006 Nov; 7(6):593-601. PubMed ID: 17095838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.