These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 15946819)
21. Use of classification regression tree in predicting oral absorption in humans. Bai JP; Utis A; Crippen G; He HD; Fischer V; Tullman R; Yin HQ; Hsu CP; Jiang L; Hwang KK J Chem Inf Comput Sci; 2004; 44(6):2061-9. PubMed ID: 15554676 [TBL] [Abstract][Full Text] [Related]
22. Classification tree models for the prediction of blood-brain barrier passage of drugs. Deconinck E; Zhang MH; Coomans D; Vander Heyden Y J Chem Inf Model; 2006; 46(3):1410-9. PubMed ID: 16711761 [TBL] [Abstract][Full Text] [Related]
23. Skin permeation rate as a function of chemical structure. Katritzky AR; Dobchev DA; Fara DC; Hür E; Tämm K; Kurunczi L; Karelson M; Varnek A; Solov'ev VP J Med Chem; 2006 Jun; 49(11):3305-14. PubMed ID: 16722649 [TBL] [Abstract][Full Text] [Related]
24. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Leonard JT; Roy K Eur J Med Chem; 2008 Jan; 43(1):81-92. PubMed ID: 17452064 [TBL] [Abstract][Full Text] [Related]
25. A topological sub-structural approach for predicting human intestinal absorption of drugs. Pérez MA; Sanz MB; Torres LR; Avalos RG; González MP; Díaz HG Eur J Med Chem; 2004 Nov; 39(11):905-16. PubMed ID: 15501539 [TBL] [Abstract][Full Text] [Related]
26. Combinatorial QSAR modeling of P-glycoprotein substrates. de Cerqueira Lima P; Golbraikh A; Oloff S; Xiao Y; Tropsha A J Chem Inf Model; 2006; 46(3):1245-54. PubMed ID: 16711744 [TBL] [Abstract][Full Text] [Related]
27. Predictive QSAR modeling of HIV reverse transcriptase inhibitor TIBO derivatives. Mandal AS; Roy K Eur J Med Chem; 2009 Apr; 44(4):1509-24. PubMed ID: 18760864 [TBL] [Abstract][Full Text] [Related]
28. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency. Venkatapathy R; Wang CY; Bruce RM; Moudgal C Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375 [TBL] [Abstract][Full Text] [Related]
29. Comments on the definition of the Q2 parameter for QSAR validation. Consonni V; Ballabio D; Todeschini R J Chem Inf Model; 2009 Jul; 49(7):1669-78. PubMed ID: 19527034 [TBL] [Abstract][Full Text] [Related]
31. QSPR prediction of n-octanol/water partition coefficient for polychlorinated biphenyls. Lü W; Chen Y; Liu M; Chen X; Hu Z Chemosphere; 2007 Sep; 69(3):469-78. PubMed ID: 17568650 [TBL] [Abstract][Full Text] [Related]
32. A rapid computational filter for cytochrome P450 1A2 inhibition potential of compound libraries. Chohan KK; Paine SW; Mistry J; Barton P; Davis AM J Med Chem; 2005 Aug; 48(16):5154-61. PubMed ID: 16078835 [TBL] [Abstract][Full Text] [Related]
33. In silico human and rat Vss quantitative structure-activity relationship models. Gleeson MP; Waters NJ; Paine SW; Davis AM J Med Chem; 2006 Mar; 49(6):1953-63. PubMed ID: 16539383 [TBL] [Abstract][Full Text] [Related]
34. QSPR models for the prediction of apparent volume of distribution. Ghafourian T; Barzegar-Jalali M; Dastmalchi S; Khavari-Khorasani T; Hakimiha N; Nokhodchi A Int J Pharm; 2006 Aug; 319(1-2):82-97. PubMed ID: 16698204 [TBL] [Abstract][Full Text] [Related]
35. Random forest: a classification and regression tool for compound classification and QSAR modeling. Svetnik V; Liaw A; Tong C; Culberson JC; Sheridan RP; Feuston BP J Chem Inf Comput Sci; 2003; 43(6):1947-58. PubMed ID: 14632445 [TBL] [Abstract][Full Text] [Related]
36. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. Hou T; Wang J; Zhang W; Xu X J Chem Inf Model; 2007; 47(1):208-18. PubMed ID: 17238266 [TBL] [Abstract][Full Text] [Related]
37. Robust cross-validation of linear regression QSAR models. Konovalov DA; Llewellyn LE; Vander Heyden Y; Coomans D J Chem Inf Model; 2008 Oct; 48(10):2081-94. PubMed ID: 18826208 [TBL] [Abstract][Full Text] [Related]
38. Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems. Asadollahi-Baboli M SAR QSAR Environ Res; 2012 Jul; 23(5-6):505-20. PubMed ID: 22452268 [TBL] [Abstract][Full Text] [Related]
39. Quantitative structure-activity relationship models for predicting biological properties, developed by combining structure- and ligand-based approaches: an application to the human ether-a-go-go-related gene potassium channel inhibition. Coi A; Massarelli I; Saraceno M; Carli N; Testai L; Calderone V; Bianucci AM Chem Biol Drug Des; 2009 Oct; 74(4):416-33. PubMed ID: 19751420 [TBL] [Abstract][Full Text] [Related]
40. Quantitative structure-activity relationship (QSAR) modeling of human blood: air partitioning with proper statistical methods and validation. Basak SC; Mills D; Hawkins DM; Kraker JJ Chem Biodivers; 2009 Apr; 6(4):487-502. PubMed ID: 19353545 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]