These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15946962)

  • 1. Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence.
    Launikonis BS; Zhou J; Royer L; Shannon TR; Brum G; Ríos E
    J Physiol; 2005 Sep; 567(Pt 2):523-43. PubMed ID: 15946962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The changes in Ca2+ sparks associated with measured modifications of intra-store Ca2+ concentration in skeletal muscle.
    Launikonis BS; Zhou J; Santiago D; Brum G; Ríos E
    J Gen Physiol; 2006 Jul; 128(1):45-54. PubMed ID: 16769796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle.
    Launikonis BS; Ríos E
    J Physiol; 2007 Aug; 583(Pt 1):81-97. PubMed ID: 17569733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'In situ' high pressure confocal Ca(2+)-fluorescence microscopy in skeletal muscle: a new method to study pressure limits in mammalian cells.
    Friedrich O; Wegner FV; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Undersea Hyperb Med; 2006; 33(3):181-95. PubMed ID: 16869532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy.
    Roe MW; Fiekers JF; Philipson LH; Bindokas VP
    Methods Mol Biol; 2006; 319():37-66. PubMed ID: 16719350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion "skraps" and dynamic buffering inside the cellular calcium store.
    Launikonis BS; Zhou J; Royer L; Shannon TR; Brum G; Ríos E
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2982-7. PubMed ID: 16473932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confocal imaging of CICR events from isolated and immobilized SR vesicles.
    Shannon TR; Bers DM; Blatter LA; Niggli E
    Cell Calcium; 2005 Nov; 38(5):497-505. PubMed ID: 16122794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle.
    Pizarro G; Ríos E
    J Gen Physiol; 2004 Sep; 124(3):239-58. PubMed ID: 15337820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle.
    Shkryl VM; Shirokova N
    J Biol Chem; 2006 Jan; 281(3):1547-54. PubMed ID: 16216882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle.
    Fink RH; Veigel C
    Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy.
    Hollingworth S; Soeller C; Baylor SM; Cannell MB
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):551-60. PubMed ID: 10922007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast XYT imaging of elementary calcium release events in muscle with multifocal multiphoton microscopy and wavelet denoising and detection.
    Von Wegner F; Both M; Fink RH; Friedrich O
    IEEE Trans Med Imaging; 2007 Jul; 26(7):925-34. PubMed ID: 17649906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and modulation of intracellular calcium release during long-lasting, depleting depolarization in mouse muscle.
    Royer L; Pouvreau S; Ríos E
    J Physiol; 2008 Oct; 586(19):4609-29. PubMed ID: 18687715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitivity of chicken's skeletal muscle sarcoplasmatic reticulum to effects of diltiazem or verapamil on calcium uptake and release.
    Mirazi N; Paydar MJ; Vali L; Dehpour AR
    Pharmazie; 2006 Jul; 61(7):625-30. PubMed ID: 16889071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium sequestration by isolated sarcoplasmic reticulum: real-time monitoring using ratiometric dual-emission spectrofluorometry and the fluorescent calcium-binding dye indo-1.
    O'Brien PJ
    Mol Cell Biochem; 1990 May; 94(2):113-9. PubMed ID: 2374546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence and differential light absorption recordings with calcium probes and potential-sensitive dyes in skinned cardiac cells.
    Fabiato A
    Can J Physiol Pharmacol; 1982 Apr; 60(4):556-67. PubMed ID: 6286076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of sarcoplasmic reticulum (SR) Ca2+ release by FK506 induces defective excitation-contraction coupling only when SR Ca2+ recycling is disturbed.
    Yoshihara S; Satoh H; Saotome M; Katoh H; Terada H; Watanabe H; Hayashi H
    Can J Physiol Pharmacol; 2005 Apr; 83(4):357-66. PubMed ID: 15877110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.