BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15947205)

  • 1. Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids.
    Marande W; Lukes J; Burger G
    Eukaryot Cell; 2005 Jun; 4(6):1137-46. PubMed ID: 15947205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual mitochondrial genome structures throughout the Euglenozoa.
    Roy J; Faktorová D; Lukes J; Burger G
    Protist; 2007 Jul; 158(3):385-96. PubMed ID: 17499547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell genomics unveils a canonical origin of the diverse mitochondrial genomes of euglenozoans.
    Záhonová K; Lax G; Sinha SD; Leonard G; Richards TA; Lukeš J; Wideman JG
    BMC Biol; 2021 May; 19(1):103. PubMed ID: 34001130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists.
    Lukeš J; Wheeler R; Jirsová D; David V; Archibald JM
    IUBMB Life; 2018 Dec; 70(12):1267-1274. PubMed ID: 30291814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory chain Complex I of unparalleled divergence in diplonemids.
    Valach M; Léveillé-Kunst A; Gray MW; Burger G
    J Biol Chem; 2018 Oct; 293(41):16043-16056. PubMed ID: 30166340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single-cell genome reveals diplonemid-like ancestry of kinetoplastid mitochondrial gene structure.
    Wideman JG; Lax G; Leonard G; Milner DS; Rodríguez-Martínez R; Simpson AGB; Richards TA
    Philos Trans R Soc Lond B Biol Sci; 2019 Nov; 374(1786):20190100. PubMed ID: 31587636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Typical structure of rRNA coding genes in diplonemids points to two independent origins of the bizarre rDNA structures of euglenozoans.
    Hałakuc P; Karnkowska A; Milanowski R
    BMC Ecol Evol; 2022 May; 22(1):59. PubMed ID: 35534840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids.
    Butenko A; Opperdoes FR; Flegontova O; Horák A; Hampl V; Keeling P; Gawryluk RMR; Tikhonenkov D; Flegontov P; Lukeš J
    BMC Biol; 2020 Mar; 18(1):23. PubMed ID: 32122335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis.
    Lukescaron J; Jirkû M; Avliyakulov N; Benada O
    EMBO J; 1998 Feb; 17(3):838-46. PubMed ID: 9451008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates.
    Lukes J; Hashimi H; Zíková A
    Curr Genet; 2005 Nov; 48(5):277-99. PubMed ID: 16215758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids.
    Harada R; Inagaki Y
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33432342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny and Reclassification of Hemistasia phaeocysticola (Scherffel) Elbrächter & Schnepf, 1996.
    Yabuki A; Tame A
    J Eukaryot Microbiol; 2015; 62(3):426-9. PubMed ID: 25377132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution and diversity of kinetoplastid flagellates.
    Simpson AG; Stevens JR; Lukes J
    Trends Parasitol; 2006 Apr; 22(4):168-74. PubMed ID: 16504583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-level unscrambling of fragmented genes in Diplonema mitochondria.
    Kiethega GN; Yan Y; Turcotte M; Burger G
    RNA Biol; 2013 Feb; 10(2):301-13. PubMed ID: 23324603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematically fragmented genes in a multipartite mitochondrial genome.
    Vlcek C; Marande W; Teijeiro S; Lukes J; Burger G
    Nucleic Acids Res; 2011 Feb; 39(3):979-88. PubMed ID: 20935050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perfection of eccentricity: Mitochondrial genomes of diplonemids.
    Burger G; Valach M
    IUBMB Life; 2018 Dec; 70(12):1197-1206. PubMed ID: 30304578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?
    Flegontov P; Gray MW; Burger G; Lukeš J
    Curr Genet; 2011 Aug; 57(4):225-32. PubMed ID: 21544620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel modes of RNA editing in mitochondria.
    Moreira S; Valach M; Aoulad-Aissa M; Otto C; Burger G
    Nucleic Acids Res; 2016 Jun; 44(10):4907-19. PubMed ID: 27001515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome.
    Spencer DF; Gray MW
    Mol Genet Genomics; 2011 Jan; 285(1):19-31. PubMed ID: 20978909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.