These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 15947445)
1. Probing the stability and structure of metalloporphyrin complexes with basic peptides by mass spectrometry. Jellen EE; Ryzhov V Eur J Mass Spectrom (Chichester); 2005; 11(1):65-72. PubMed ID: 15947445 [TBL] [Abstract][Full Text] [Related]
2. Using collision-induced dissociation with corrections for the ion number of degrees of freedom for quick comparisons of relative bonding strength. Vinokur N; Ryzhov V J Mass Spectrom; 2004 Nov; 39(11):1268-74. PubMed ID: 15472933 [TBL] [Abstract][Full Text] [Related]
3. Effects of size of noncovalent complexes on their stability during collision-induced dissociation. Jellen EE; Chappell AM; Ryzhov V Rapid Commun Mass Spectrom; 2002; 16(19):1799-804. PubMed ID: 12271443 [TBL] [Abstract][Full Text] [Related]
4. Non-covalent interactions of alkali metal cations with singly charged tryptic peptides. Rožman M; Gaskell SJ J Mass Spectrom; 2010 Dec; 45(12):1409-15. PubMed ID: 21031360 [TBL] [Abstract][Full Text] [Related]
5. Effect of the position of a basic amino acid on C-terminal rearrangement of protonated peptides upon collision-induced dissociation. Gonzalez J; Besada V; Garay H; Reyes O; Padron G; Tambara Y; Takao T; Shimonishi Y J Mass Spectrom; 1996 Feb; 31(2):150-8. PubMed ID: 8799268 [TBL] [Abstract][Full Text] [Related]
6. Charge state effect on the zwitterion influence on stability of non-covalent interaction of single-stranded DNA with peptides. Alves S; Woods A; Tabet JC J Mass Spectrom; 2007 Dec; 42(12):1613-22. PubMed ID: 18085569 [TBL] [Abstract][Full Text] [Related]
7. Axial imidazole binding strengths in porphyrinoid cobalt(III) complexes as studied by tandem mass spectrometry. Mishra E; Worlinsky JL; Gilbert TM; Brückner C; Ryzhov V J Am Soc Mass Spectrom; 2012 Jun; 23(6):1135-46. PubMed ID: 22528200 [TBL] [Abstract][Full Text] [Related]
8. Gas-phase binding of non-covalent protein complexes between bovine pancreatic trypsin inhibitor and its target enzymes studied by electrospray ionization tandem mass spectrometry. Nesatyy VJ J Mass Spectrom; 2001 Aug; 36(8):950-9. PubMed ID: 11523096 [TBL] [Abstract][Full Text] [Related]
9. Comparison of CID spectra of singly charged polypeptide antibiotic precursor ions obtained by positive-ion vacuum MALDI IT/RTOF and TOF/RTOF, AP-MALDI-IT and ESI-IT mass spectrometry. Pittenauer E; Zehl M; Belgacem O; Raptakis E; Mistrik R; Allmaier G J Mass Spectrom; 2006 Apr; 41(4):421-47. PubMed ID: 16604520 [TBL] [Abstract][Full Text] [Related]
10. Investigation of the electrospray response of lysine-, arginine-, and homoarginine-terminal peptide mixtures by liquid chromatography/mass spectrometry. Brancia FL; Openshaw ME; Kumashiro S Rapid Commun Mass Spectrom; 2002; 16(24):2255-9. PubMed ID: 12478568 [TBL] [Abstract][Full Text] [Related]
11. Study of peptides containing modified lysine residues by tandem mass spectrometry: precursor ion scanning of hexanal-modified peptides. Fenaille F; Tabet JC; Guy PA Rapid Commun Mass Spectrom; 2004; 18(1):67-76. PubMed ID: 14689561 [TBL] [Abstract][Full Text] [Related]
12. Infrared spectroscopy of arginine cation complexes: direct observation of gas-phase zwitterions. Forbes MW; Bush MF; Polfer NC; Oomens J; Dunbar RC; Williams ER; Jockusch RA J Phys Chem A; 2007 Nov; 111(46):11759-70. PubMed ID: 17973465 [TBL] [Abstract][Full Text] [Related]
13. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. Laskin J; Yang Z; Song T; Lam C; Chu IK J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217 [TBL] [Abstract][Full Text] [Related]
14. Collision-induced dissociation tandem mass spectrometry of desferrioxamine siderophore complexes from electrospray ionization of UO2(2+), Fe3+ and Ca2+ solutions. Groenewold GS; Van Stipdonk MJ; Gresham GL; Chien W; Bulleigh K; Howard A J Mass Spectrom; 2004 Jul; 39(7):752-61. PubMed ID: 15282754 [TBL] [Abstract][Full Text] [Related]
15. Effect of charge on the conformation of highly basic peptides including the tail regions of histone proteins by ion mobility mass spectrometry. Akashi S; Downard KM Anal Bioanal Chem; 2016 Sep; 408(24):6637-48. PubMed ID: 27447695 [TBL] [Abstract][Full Text] [Related]
16. Study of the fragmentation patterns of the phosphate-arginine noncovalent bond. Jackson SN; Wang HY; Woods AS J Proteome Res; 2005; 4(6):2360-3. PubMed ID: 16335986 [TBL] [Abstract][Full Text] [Related]
17. Structural and energetic effects in the molecular recognition of amino acids by 18-crown-6. Chen Y; Rodgers MT J Am Chem Soc; 2012 Apr; 134(13):5863-75. PubMed ID: 22400976 [TBL] [Abstract][Full Text] [Related]
18. Selective molecular recognition of arginine by anionic salt bridge formation with bis-phosphate crown ethers: implications for gas phase peptide acidity from adduct dissociation. Julian RR; Beauchamp JL J Am Soc Mass Spectrom; 2004 Apr; 15(4):616-24. PubMed ID: 15047066 [TBL] [Abstract][Full Text] [Related]
19. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides. Sierakowski J; Amunugama M; Roberts KD; Reid GE Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214 [TBL] [Abstract][Full Text] [Related]
20. Quantitative electrospray ionization mass spectrometric studies of ternary complexes of amino acids with Cu(2+) and phenanthroline. Gatlin CL; Turecek F J Mass Spectrom; 2000 Feb; 35(2):172-7. PubMed ID: 10679978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]