These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1594758)

  • 1. Diatom response to extremely low-frequency magnetic fields.
    Parkinson WC; Sulik GL
    Radiat Res; 1992 Jun; 130(3):319-30. PubMed ID: 1594758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A test of the influence of cyclotron resonance exposures on diatom motility.
    Prasad AV; Miller MW; Cox C; Carstensen EL; Hoops H; Brayman AA
    Health Phys; 1994 Mar; 66(3):305-12. PubMed ID: 8106250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic cyclotron resonance in biomolecules.
    Zhadin MN; Fesenko EE
    Biomed Sci; 1990 Mar; 1(3):245-50. PubMed ID: 2103827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diatom motility: the search for independent replication of biological effects of extremely low-frequency electromagnetic fields.
    Clarkson N; Davies MS; Dixey R
    Int J Radiat Biol; 1999 Mar; 75(3):387-92. PubMed ID: 10203189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular ELF signals as a possible tool in informative medicine.
    Foletti A; Lisi A; Ledda M; de Carlo F; Grimaldi S
    Electromagn Biol Med; 2009; 28(1):71-9. PubMed ID: 19337897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between weak low frequency magnetic fields and cell membranes.
    Bauréus Koch CL; Sommarin M; Persson BR; Salford LG; Eberhardt JL
    Bioelectromagnetics; 2003 Sep; 24(6):395-402. PubMed ID: 12929158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of combined DC and AC magnetic fields on germination of hornwort seeds.
    Kobayashi M; Soda N; Miyo T; Ueda Y
    Bioelectromagnetics; 2004 Oct; 25(7):552-9. PubMed ID: 15376241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of extremely low frequency magnetic fields on intracellular free calcium in HepG2 cells].
    Yang W; Xu T; Huo XL; Song T
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2003 Oct; 21(5):332-4. PubMed ID: 14761392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-field ion cyclotron resonance.
    Liboff AR
    Bioelectromagnetics; 1997; 18(1):85-7. PubMed ID: 9125238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of AC-DC magnetic field effects in planar phospholipid bilayers.
    Durney CH; Kaminski M; Anderson AA; Bruckner-Lea C; Janata J; Rappaport C
    Bioelectromagnetics; 1992; 13(1):19-33. PubMed ID: 1550598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude and frequency dissociation spectra of ion-protein complexes rotating in magnetic fields.
    Binhi VN
    Bioelectromagnetics; 2000 Jan; 21(1):34-45. PubMed ID: 10615090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Effects of Extremely Low Frequency Electromagnetic Fields on Movement in the Marine Diatom Amphora coffeaeformis.
    Davies MS; Dixey R; Green JC
    Biol Bull; 1998 Apr; 194(2):194-223. PubMed ID: 28570846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields.
    Reese JA; Frazier ME; Morris JE; Buschbom RL; Miller DL
    Bioelectromagnetics; 1991; 12(1):21-5. PubMed ID: 2012618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some problems in modern bioelectromagnetics.
    Zhadin M; Giuliani L
    Electromagn Biol Med; 2006; 25(4):227-43. PubMed ID: 17178583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Evaluation of genotoxic and/or co-genotoxic effects in cells exposed in vitro to extremely-low frequency electromagnetic fields].
    Scassellati Sforzolini G; Moretti M; Villarini M; Fatigoni C; Pasquini R
    Ann Ig; 2004; 16(1-2):321-40. PubMed ID: 15554538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation.
    Yamaguchi DT; Huang J; Ma D; Wang PK
    J Cell Physiol; 2002 Feb; 190(2):180-8. PubMed ID: 11807822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium ion cyclotron resonance (ICR), 7.0 Hz, 9.2 microT magnetic field exposure initiates differentiation of pituitary corticotrope-derived AtT20 D16V cells.
    Foletti A; Ledda M; De Carlo F; Grimaldi S; Lisi A
    Electromagn Biol Med; 2010 Aug; 29(3):63-71. PubMed ID: 20707641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveform magnetic field survey in Russian DC and Swiss AC powered trains: a basis for biologically relevant exposure assessment.
    Ptitsyna NG; Kopytenko YA; Villoresi G; Pfluger DH; Ismaguilov V; Iucci N; Kopytenko EA; Zaitzev DB; Voronov PM; Tyasto MI
    Bioelectromagnetics; 2003 Dec; 24(8):546-56. PubMed ID: 14603474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-effects of extremely low frequency electromagnetic fields (60 Hz.) on the healing of corneal epithelial wound: an in vitro study.
    Basu PK; Menon IA; Chipman M; Avaria M; Hasany SM; Wiltshire JD
    Lens Eye Toxic Res; 1989; 6(1-2):43-58. PubMed ID: 2488033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.