BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15947734)

  • 1. Is leg-to-leg BIA valid for predicting minimum weight in wrestlers?
    Clark RR; Bartok C; Sullivan JC; Schoeller DA
    Med Sci Sports Exerc; 2005 Jun; 37(6):1061-8. PubMed ID: 15947734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent cross-validation of minimum weight predictions for college wrestlers.
    Clark RR; Sullivan JC; Bartok C; Schoeller DA
    Med Sci Sports Exerc; 2003 Feb; 35(2):342-7. PubMed ID: 12569226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum weight prediction methods cross-validated by the four-component model.
    Clark RR; Bartok C; Sullivan JC; Schoeller DA
    Med Sci Sports Exerc; 2004 Apr; 36(4):639-47. PubMed ID: 15064592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DXA provides a valid minimum weight in wrestlers.
    Clark RR; Sullivan JC; Bartok CJ; Carrel AL
    Med Sci Sports Exerc; 2007 Nov; 39(11):2069-75. PubMed ID: 17986917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dehydration on wrestling minimum weight assessment.
    Bartok C; Schoeller DA; Randall Clark R; Sullivan JC; Landry GL
    Med Sci Sports Exerc; 2004 Jan; 36(1):160-7. PubMed ID: 14707783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrestlers' minimal weight: anthropometry, bioimpedance, and hydrostatic weighing compared.
    Oppliger RA; Nielsen DH; Vance CG
    Med Sci Sports Exerc; 1991 Feb; 23(2):247-53. PubMed ID: 2017023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children.
    Kriemler S; Puder J; Zahner L; Roth R; Braun-Fahrländer C; Bedogni G
    Eur J Clin Nutr; 2009 May; 63(5):619-26. PubMed ID: 18285806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of methods to predict minimal weight in high school wrestlers.
    Clark RR; Kuta JM; Sullivan JC; Bedford WM; Penner JD; Studesville EA
    Med Sci Sports Exerc; 1993 Jan; 25(1):151-8. PubMed ID: 8423749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of leg-to-leg bioelectrical impedance and skinfolds in assessing body fat in collegiate wrestlers.
    Utter AC; Scott JR; Oppliger RA; Visich PS; Goss FL; Marks BL; Nieman DC; Smith BW
    J Strength Cond Res; 2001 May; 15(2):157-60. PubMed ID: 11710398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals.
    Boneva-Asiova Z; Boyanov MA
    Diabetes Obes Metab; 2008 Nov; 10(11):1012-8. PubMed ID: 18435776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Good agreement between bioelectrical impedance and dual-energy X-ray absorptiometry for estimating changes in body composition during weight loss in overweight young women.
    Thomson R; Brinkworth GD; Buckley JD; Noakes M; Clifton PM
    Clin Nutr; 2007 Dec; 26(6):771-7. PubMed ID: 17936443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioelectrical impedance vs. four-compartment model to assess body fat change in overweight adults.
    Chouinard LE; Schoeller DA; Watras AC; Clark RR; Close RN; Buchholz AC
    Obesity (Silver Spring); 2007 Jan; 15(1):85-92. PubMed ID: 17228035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NCAA rule change improves weight loss among national championship wrestlers.
    Oppliger RA; Utter AC; Scott JR; Dick RW; Klossner D
    Med Sci Sports Exerc; 2006 May; 38(5):963-70. PubMed ID: 16672852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.
    Jaffrin MY; Morel H
    Med Eng Phys; 2008 Dec; 30(10):1257-69. PubMed ID: 18676172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-validation of the NCAA method to predict body fat for minimum weight in collegiate wrestlers.
    Clark RR; Oppliger RA; Sullivan JC
    Clin J Sport Med; 2002 Sep; 12(5):285-90. PubMed ID: 12394200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of air displacement for assessing body composition of collegiate wrestlers.
    Utter AC; Goss FL; Swan PD; Harris GS; Robertson RJ; Trone GA
    Med Sci Sports Exerc; 2003 Mar; 35(3):500-5. PubMed ID: 12618582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of body composition in Sri Lankan children: validation of a bioelectrical impedance prediction equation.
    Wickramasinghe VP; Lamabadusuriya SP; Cleghorn GJ; Davies PS
    Eur J Clin Nutr; 2008 Oct; 62(10):1170-7. PubMed ID: 17700653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers.
    Utter AC; Lambeth PG
    Med Sci Sports Exerc; 2010 Feb; 42(2):361-7. PubMed ID: 19927023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of leg-to-leg BIA in assessing body composition of high-school wrestlers.
    Utter AC; Nieman DC; Mulford GJ; Tobin R; Schumm S; McInnis T; Monk JR
    Med Sci Sports Exerc; 2005 Aug; 37(8):1395-400. PubMed ID: 16118588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body composition: validity of segmental bioelectrical impedance analysis.
    LaForgia J; Gunn S; Withers RT
    Asia Pac J Clin Nutr; 2008; 17(4):586-91. PubMed ID: 19114394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.