BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15947919)

  • 1. Learning and recall of incremental kinematic and dynamic sensorimotor transformations.
    Klassen J; Tong C; Flanagan JR
    Exp Brain Res; 2005 Jul; 164(2):250-9. PubMed ID: 15947919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study.
    Tong C; Wolpert DM; Flanagan JR
    J Neurosci; 2002 Feb; 22(3):1108-13. PubMed ID: 11826139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-specific internal models for kinematic transformations.
    Tong C; Flanagan JR
    J Neurophysiol; 2003 Aug; 90(2):578-85. PubMed ID: 12904486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments.
    Flanagan JR; Nakano E; Imamizu H; Osu R; Yoshioka T; Kawato M
    J Neurosci; 1999 Oct; 19(20):RC34. PubMed ID: 10516336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation.
    Hinder MR; Walk L; Woolley DG; Riek S; Carson RG
    Exp Brain Res; 2007 Jul; 180(4):629-40. PubMed ID: 17588186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Parkinson's disease and dopaminergic medication on adaptation to explicit and implicit visuomotor perturbations.
    Mongeon D; Blanchet P; Messier J
    Brain Cogn; 2013 Mar; 81(2):271-82. PubMed ID: 23313834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning the visuomotor transformation of virtual and real sliding levers: simple approximations of complex transformations.
    Sülzenbrück S; Heuer H
    Exp Brain Res; 2009 May; 195(1):153-65. PubMed ID: 19294369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interference between velocity-dependent and position-dependent force-fields indicates that tasks depending on different kinematic parameters compete for motor working memory.
    Bays PM; Flanagan JR; Wolpert DM
    Exp Brain Res; 2005 Jun; 163(3):400-5. PubMed ID: 15856202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent learning of internal models for kinematic and dynamic control of reaching.
    Krakauer JW; Ghilardi MF; Ghez C
    Nat Neurosci; 1999 Nov; 2(11):1026-31. PubMed ID: 10526344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of reach-to-grasp movement in response to force perturbations.
    Rand MK; Shimansky Y; Stelmach GE; Bloedel JR
    Exp Brain Res; 2004 Jan; 154(1):50-65. PubMed ID: 14530893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of implicit memory to adaptation of movement extent during reaching against unpredictable spring-like loads: insensitivity to intentional suppression of kinematic performance.
    Lantagne DD; Mrotek LA; Hoelzle JB; Thomas DG; Scheidt RA
    Exp Brain Res; 2023 Sep; 241(9):2209-2227. PubMed ID: 37507633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of rest breaks on human sensorimotor adaptation.
    Bock O; Thomas M; Grigorova V
    Exp Brain Res; 2005 May; 163(2):258-60. PubMed ID: 15754173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence of motor adaptation during constrained, multi-joint, arm movements.
    Scheidt RA; Reinkensmeyer DJ; Conditt MA; Rymer WZ; Mussa-Ivaldi FA
    J Neurophysiol; 2000 Aug; 84(2):853-62. PubMed ID: 10938312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acquisition and contextual switching of multiple internal models for different viscous force fields.
    Wada Y; Kawabata Y; Kotosaka S; Yamamoto K; Kitazawa S; Kawato M
    Neurosci Res; 2003 Jul; 46(3):319-31. PubMed ID: 12804793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous sensorimotor adaptation and sequence learning.
    Overduin SA; Richardson AG; Bizzi E; Press DZ
    Exp Brain Res; 2008 Jan; 184(3):451-6. PubMed ID: 18030451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forces That Supplement Visuomotor Learning: A "Sensory Crossover" Experiment.
    Bittmann MF; Patton JL
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1109-1116. PubMed ID: 28113982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing explicit strategies in force field adaptation.
    Schween R; McDougle SD; Hegele M; Taylor JA
    J Neurophysiol; 2020 Apr; 123(4):1552-1565. PubMed ID: 32208878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation paths to novel motor tasks are shaped by prior structure learning.
    Kobak D; Mehring C
    J Neurosci; 2012 Jul; 32(29):9898-908. PubMed ID: 22815505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acquisition and generalization of visuomotor transformations by nonhuman primates.
    Paz R; Nathan C; Boraud T; Bergman H; Vaadia E
    Exp Brain Res; 2005 Feb; 161(2):209-19. PubMed ID: 15480596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.