These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 15948148)
1. Manganese transport by rat brain endothelial (RBE4) cell-based transwell model in the presence of astrocyte conditioned media. Fitsanakis VA; Piccola G; Aschner JL; Aschner M J Neurosci Res; 2005 Jul; 81(2):235-43. PubMed ID: 15948148 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of manganese (Mn) transport in rat brain endothelial (RBE4) cells, an in vitro model of the blood-brain barrier. Fitsanakis VA; Piccola G; Aschner JL; Aschner M Neurotoxicology; 2006 Jan; 27(1):60-70. PubMed ID: 16169084 [TBL] [Abstract][Full Text] [Related]
3. Putative proteins involved in manganese transport across the blood-brain barrier. Fitsanakis VA; Piccola G; Marreilha dos Santos AP; Aschner JL; Aschner M Hum Exp Toxicol; 2007 Apr; 26(4):295-302. PubMed ID: 17615110 [TBL] [Abstract][Full Text] [Related]
4. Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Erikson KM; Aschner M Neurotoxicology; 2006 Jan; 27(1):125-30. PubMed ID: 16140386 [TBL] [Abstract][Full Text] [Related]
5. Manganese distribution across the blood-brain barrier III. The divalent metal transporter-1 is not the major mechanism mediating brain manganese uptake. Crossgrove JS; Yokel RA Neurotoxicology; 2004 Mar; 25(3):451-60. PubMed ID: 15019308 [TBL] [Abstract][Full Text] [Related]
6. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869 [TBL] [Abstract][Full Text] [Related]
7. Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Omidi Y; Barar J; Ahmadian S; Heidari HR; Gumbleton M Cell Biochem Funct; 2008 Apr; 26(3):381-91. PubMed ID: 18210381 [TBL] [Abstract][Full Text] [Related]
8. Manganese distribution across the blood-brain barrier. IV. Evidence for brain influx through store-operated calcium channels. Crossgrove JS; Yokel RA Neurotoxicology; 2005 Jun; 26(3):297-307. PubMed ID: 15935202 [TBL] [Abstract][Full Text] [Related]
9. Glial induction of blood-brain barrier-like L-system amino acid transport in the ECV304 cell line. Chishty M; Reichel A; Begley DJ; Abbott NJ Glia; 2002 Aug; 39(2):99-104. PubMed ID: 12112361 [TBL] [Abstract][Full Text] [Related]
10. Comparison of two blood-brain barrier in vitro systems: cytotoxicity and transfer assessments of malathion/oxon and lead acetate. Balbuena P; Li W; Magnin-Bissel G; Meldrum JB; Ehrich M Toxicol Sci; 2010 Apr; 114(2):260-71. PubMed ID: 20064834 [TBL] [Abstract][Full Text] [Related]
11. A novel flow based hollow-fiber blood-brain barrier in vitro model with immortalised cell line PBMEC/C1-2. Neuhaus W; Lauer R; Oelzant S; Fringeli UP; Ecker GF; Noe CR J Biotechnol; 2006 Aug; 125(1):127-41. PubMed ID: 16730091 [TBL] [Abstract][Full Text] [Related]
12. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. O'Kane RL; Hawkins RA Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1167-73. PubMed ID: 12933350 [TBL] [Abstract][Full Text] [Related]
13. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Cucullo L; Hossain M; Rapp E; Manders T; Marchi N; Janigro D Epilepsia; 2007 Mar; 48(3):505-16. PubMed ID: 17326793 [TBL] [Abstract][Full Text] [Related]
14. Influence of basolateral condition on the regulation of brain microvascular endothelial tight junction properties and barrier function. Colgan OC; Collins NT; Ferguson G; Murphy RP; Birney YA; Cahill PA; Cummins PM Brain Res; 2008 Feb; 1193():84-92. PubMed ID: 18177846 [TBL] [Abstract][Full Text] [Related]
15. In vitro models for the blood-brain barrier. Garberg P; Ball M; Borg N; Cecchelli R; Fenart L; Hurst RD; Lindmark T; Mabondzo A; Nilsson JE; Raub TJ; Stanimirovic D; Terasaki T; Oberg JO; Osterberg T Toxicol In Vitro; 2005 Apr; 19(3):299-334. PubMed ID: 15713540 [TBL] [Abstract][Full Text] [Related]
16. Manganese uptake and distribution in the central nervous system (CNS). Aschner M; Vrana KE; Zheng W Neurotoxicology; 1999; 20(2-3):173-80. PubMed ID: 10385881 [TBL] [Abstract][Full Text] [Related]
17. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Zhang Y; Li CS; Ye Y; Johnson K; Poe J; Johnson S; Bobrowski W; Garrido R; Madhu C Drug Metab Dispos; 2006 Nov; 34(11):1935-43. PubMed ID: 16896068 [TBL] [Abstract][Full Text] [Related]
18. Manganese toxicokinetics at the blood-brain barrier. Yokel RA; Crossgrove JS Res Rep Health Eff Inst; 2004 Jan; (119):7-58; discussion 59-73. PubMed ID: 15043400 [TBL] [Abstract][Full Text] [Related]
19. Development of an in vitro blood-brain barrier model-cytotoxicity of mercury and aluminum. Toimela T; Mäenpää H; Mannerström M; Tähti H Toxicol Appl Pharmacol; 2004 Feb; 195(1):73-82. PubMed ID: 14962507 [TBL] [Abstract][Full Text] [Related]
20. On the mechanism of oleate transport across human brain microvessel endothelial cells. Mitchell RW; Edmundson CL; Miller DW; Hatch GM J Neurochem; 2009 Aug; 110(3):1049-57. PubMed ID: 19493158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]