These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15948633)

  • 1. Construction of non-symmetric substitution matrices derived from proteomes with biased amino acid distributions.
    Bastien O; Roy S; Maréchal E
    C R Biol; 2005 May; 328(5):445-53. PubMed ID: 15948633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins.
    Brick K; Pizzi E
    BMC Bioinformatics; 2008 May; 9():236. PubMed ID: 18485187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome bias influences amino acid choices: analysis of amino acid substitution and re-compilation of substitution matrices exclusive to an AT-biased genome.
    Paila U; Kondam R; Ranjan A
    Nucleic Acids Res; 2008 Dec; 36(21):6664-75. PubMed ID: 18948281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the compositional biases in Plasmodium falciparum genome and proteome using Arabidopsis thaliana as a reference.
    Bastien O; Lespinats S; Roy S; Métayer K; Fertil B; Codani JJ; Maréchal E
    Gene; 2004 Jul; 336(2):163-73. PubMed ID: 15246528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The compositional adjustment of amino acid substitution matrices.
    Yu YK; Wootton JC; Altschul SF
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15688-93. PubMed ID: 14663142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes.
    Chanda I; Pan A; Dutta C
    J Mol Evol; 2005 Oct; 61(4):513-23. PubMed ID: 16044241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The construction of amino acid substitution matrices for the comparison of proteins with non-standard compositions.
    Yu YK; Altschul SF
    Bioinformatics; 2005 Apr; 21(7):902-11. PubMed ID: 15509610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic analysis of proteomes with emphasis on insertions in malaria parasite Plasmodium falciparum.
    Kapil C; Hussain T; Jairajpuri MA; Yogavel M; Chatterjee S; Sharma A
    Protein Pept Lett; 2013 Oct; 20(10):1088-97. PubMed ID: 23688187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of mobile genetic elements in three Plasmodium species and their potential impact on the nucleotide composition of the P. falciparum genome.
    Durand PM; Oelofse AJ; Coetzer TL
    BMC Genomics; 2006 Nov; 7():282. PubMed ID: 17083741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of differences in amino acid substitution patterns, using multilevel G-tests.
    Pacholczyk M; Kimmel M
    C R Biol; 2005 Jul; 328(7):632-41. PubMed ID: 15992746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional properties of nuclear genes from Plasmodium falciparum.
    Musto H; Rodriguez-Maseda H; Bernardi G
    Gene; 1995 Jan; 152(1):127-32. PubMed ID: 7828919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abundance of intrinsically unstructured proteins in P. falciparum and other apicomplexan parasite proteomes.
    Feng ZP; Zhang X; Han P; Arora N; Anders RF; Norton RS
    Mol Biochem Parasitol; 2006 Dec; 150(2):256-67. PubMed ID: 17010454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-specific amino acid substitution matrices and their use in the detection of protein homologs.
    Goonesekere NC; Lee B
    Proteins; 2008 May; 71(2):910-9. PubMed ID: 18004781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biased amino acid composition in repeat regions of Plasmodium antigens.
    Verra F; Hughes AL
    Mol Biol Evol; 1999 May; 16(5):627-33. PubMed ID: 10335656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transition probability model for amino acid substitutions from blocks.
    Veerassamy S; Smith A; Tillier ER
    J Comput Biol; 2003; 10(6):997-1010. PubMed ID: 14980022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Collation of the Plasmodium falciparum WDR Protein Superfamily Reveals Malarial Parasite-Specific Features.
    Chahar P; Kaushik M; Gill SS; Gakhar SK; Gopalan N; Datt M; Sharma A; Gill R
    PLoS One; 2015; 10(6):e0128507. PubMed ID: 26043001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of polymorphism of
    Ying D; Ai-Ming S; Meng-Ni C; Yan-Chun X; Xiang-Hua M; Yan D; Hen-Lin Y
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(4):411-417. PubMed ID: 29376283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein database searches using compositionally adjusted substitution matrices.
    Altschul SF; Wootton JC; Gertz EM; Agarwala R; Morgulis A; Schäffer AA; Yu YK
    FEBS J; 2005 Oct; 272(20):5101-9. PubMed ID: 16218944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of P-type ATPase 3 in Plasmodium falciparum.
    Rozmajzl PJ; Kimura M; Woodrow CJ; Krishna S; Meade JC
    Mol Biochem Parasitol; 2001 Sep; 116(2):117-26. PubMed ID: 11522345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: compositional constraints and translational selection.
    Musto H; Romero H; Zavala A; Jabbari K; Bernardi G
    J Mol Evol; 1999 Jul; 49(1):27-35. PubMed ID: 10368431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.