These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 15948966)
1. Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via alpha-ketoglutarate-dependent dioxygenases. Cultrone A; Scazzocchio C; Rochet M; Montero-Morán G; Drevet C; Fernández-Martín R Mol Microbiol; 2005 Jul; 57(1):276-90. PubMed ID: 15948966 [TBL] [Abstract][Full Text] [Related]
2. Genetic characterization of the Neurospora crassa molybdenum cofactor biosynthesis. Probst C; Ringel P; Boysen V; Wirsing L; Alexander MM; Mendel RR; Kruse T Fungal Genet Biol; 2014 May; 66():69-78. PubMed ID: 24569084 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of the FeII- and alpha-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Montero-Morán GM; Li M; Rendòn-Huerta E; Jourdan F; Lowe DJ; Stumpff-Kane AW; Feig M; Scazzocchio C; Hausinger RP Biochemistry; 2007 May; 46(18):5293-304. PubMed ID: 17429948 [TBL] [Abstract][Full Text] [Related]
4. Purification and characterization of an Fe Bocanegra-Jiménez FY; Montero-Morán GM; Lara-González S Protein Expr Purif; 2021 Jul; 183():105862. PubMed ID: 33716123 [TBL] [Abstract][Full Text] [Related]
5. Evidence for MoeA-dependent formation of the molybdenum cofactor from molybdate and molybdopterin in Escherichia coli. Sandu C; Brandsch R Arch Microbiol; 2002 Dec; 178(6):465-70. PubMed ID: 12420167 [TBL] [Abstract][Full Text] [Related]
6. The tightly regulated promoter of the xanA gene of Aspergillus nidulans is included in a helitron. Cultrone A; Domínguez YR; Drevet C; Scazzocchio C; Fernández-Martín R Mol Microbiol; 2007 Mar; 63(6):1577-87. PubMed ID: 17367381 [TBL] [Abstract][Full Text] [Related]
7. Deletion of the cnxE gene encoding the gephyrin-like protein involved in the final stages of molybdenum cofactor biosynthesis in Aspergillus nidulans. Millar LJ; Heck IS; Sloan J; Kana'n GJ; Kinghorn JR; Unkles SE Mol Genet Genomics; 2001 Nov; 266(3):445-53. PubMed ID: 11713674 [TBL] [Abstract][Full Text] [Related]
8. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori. Fujii T; Yamamoto K; Banno Y Insect Biochem Mol Biol; 2016 Jun; 73():20-6. PubMed ID: 27041280 [TBL] [Abstract][Full Text] [Related]
9. The Aspergillus nidulans cnxF gene and its involvement in molybdopterin biosynthesis. Molecular characterization and analysis of in vivo generated mutants. Appleyard MV; Sloan J; Kana'n GJ; Heck IS; Kinghorn JR; Unkles SE J Biol Chem; 1998 Jun; 273(24):14869-76. PubMed ID: 9614089 [TBL] [Abstract][Full Text] [Related]
10. The Aspergillus nidulans cnxABC locus is a single gene encoding two catalytic domains required for synthesis of precursor Z, an intermediate in molybdenum cofactor biosynthesis. Unkles SE; Smith J; Kanan GJ; Millar LJ; Heck IS; Boxer DH; Kinghorn JR J Biol Chem; 1997 Nov; 272(45):28381-90. PubMed ID: 9353296 [TBL] [Abstract][Full Text] [Related]
11. Mcp1 encodes the molybdenum cofactor carrier protein in Chlamydomonas reinhardtii and participates in protection, binding, and storage functions of the cofactor. Ataya FS; Witte CP; Galván A; Igeño MI; Fernández E J Biol Chem; 2003 Mar; 278(13):10885-90. PubMed ID: 12519777 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization of molybdenum cofactor-free nitrate reductase from Neurospora crassa. Ringel P; Krausze J; van den Heuvel J; Curth U; Pierik AJ; Herzog S; Mendel RR; Kruse T J Biol Chem; 2013 May; 288(20):14657-14671. PubMed ID: 23539622 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of the gephyrin-related molybdenum cofactor biosynthetic gene cnxE from the lower eukaryote Aspergillus nidulans. Heck IS; Schrag JD; Sloan J; Millar LJ; Kanan G; Kinghorn JR; Unkles SE Genetics; 2002 Jun; 161(2):623-32. PubMed ID: 12072459 [TBL] [Abstract][Full Text] [Related]
15. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Sagi M; Scazzocchio C; Fluhr R Plant J; 2002 Aug; 31(3):305-17. PubMed ID: 12164810 [TBL] [Abstract][Full Text] [Related]
16. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker C; Schindelin H; Rees DC Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor. Amrani L; Primus J; Glatigny A; Arcangeli L; Scazzocchio C; Finnerty V Mol Microbiol; 2000 Oct; 38(1):114-25. PubMed ID: 11029694 [TBL] [Abstract][Full Text] [Related]
18. Cloning of the cDNAs coding for two novel molybdo-flavoproteins showing high similarity with aldehyde oxidase and xanthine oxidoreductase. Terao M; Kurosaki M; Saltini G; Demontis S; Marini M; Salmona M; Garattini E J Biol Chem; 2000 Sep; 275(39):30690-700. PubMed ID: 10893244 [TBL] [Abstract][Full Text] [Related]
19. Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy. Reschke S; Mebs S; Sigfridsson-Clauss KG; Kositzki R; Leimkühler S; Haumann M Inorg Chem; 2017 Feb; 56(4):2165-2176. PubMed ID: 28170236 [TBL] [Abstract][Full Text] [Related]
20. Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase. Okamoto K; Kusano T; Nishino T Curr Pharm Des; 2013; 19(14):2606-14. PubMed ID: 23116398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]