These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15949544)

  • 1. The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA.
    Renouf-Glauser AC; Rose J; Farrar DF; Cameron RE
    Biomaterials; 2005 Oct; 26(29):5771-82. PubMed ID: 15949544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A degradation study of PLLA containing lauric acid.
    Renouf-Glauser AC; Rose J; Farrar D; Cameron RE
    Biomaterials; 2005 May; 26(15):2415-22. PubMed ID: 15585245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties.
    Pluta M; Galeski A
    Biomacromolecules; 2007 Jun; 8(6):1836-43. PubMed ID: 17472336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers.
    Zhang X; Kotaki M; Okubayashi S; Sukigara S
    Acta Biomater; 2010 Jan; 6(1):123-9. PubMed ID: 19508907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro cell response to differences in poly-L-lactide crystallinity.
    Park A; Cima LG
    J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers.
    Lu XL; Sun ZJ; Cai W; Gao ZY
    J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing, annealing and sterilisation of poly-L-lactide.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A
    Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the hydrolytic degradation and deformation properties of a PLLA-lauric acid based family of biomaterials.
    Renouf-Glauser AC; Rose J; Farrar DF; Cameron RE
    Biomacromolecules; 2006 Feb; 7(2):612-7. PubMed ID: 16471938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA).
    Loo SC; Ooi CP; Wee SH; Boey YC
    Biomaterials; 2005 Jun; 26(16):2827-33. PubMed ID: 15603778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing and characterization of absorbable polylactide polymers for use in surgical implants.
    Andriano KP; Pohjonen T; Törmälä P
    J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of load and temperature on in vitro degradation of poly(glycolide-co-L-lactide) multifilament braids.
    Deng M; Zhou J; Chen G; Burkley D; Xu Y; Jamiolkowski D; Barbolt T
    Biomaterials; 2005 Jul; 26(20):4327-36. PubMed ID: 15683657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly L-lactide screws.
    Handolin L; Pohjonen T; Partio EK; Arnala I; Törmälä P; Rokkanen P
    Biomaterials; 2002 Jul; 23(13):2733-6. PubMed ID: 12059023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.
    Oyama HT; Tanishima D; Ogawa R
    Biomacromolecules; 2017 Apr; 18(4):1281-1292. PubMed ID: 28277656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.
    Park JW; Doi Y; Iwata T
    Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An enhanced strength retention poly(glycolic acid)-poly(L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis.
    Pietrzak WS; Kumar M
    J Craniofac Surg; 2009 Sep; 20(5):1533-7. PubMed ID: 19816292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ring opening polymerization of L-lactide initiated by creatinine.
    Wang C; Li H; Zhao X
    Biomaterials; 2004 Dec; 25(27):5797-801. PubMed ID: 15172491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.