These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15949610)

  • 41. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs).
    Muchitsch N; Van Nooten T; Bastiaens L; Kjeldsen P
    J Contam Hydrol; 2011 Nov; 126(3-4):258-70. PubMed ID: 22115091
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Monitoring trichloroethene remediation at an iron permeable reactive barrier using stable carbon isotopic analysis.
    VanStone N; Przepiora A; Vogan J; Lacrampe-Couloume G; Powers B; Perez E; Mabury S; Sherwood Lollar B
    J Contam Hydrol; 2005 Aug; 78(4):313-25. PubMed ID: 16026893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment.
    Kurniawan TA; Lo WH
    Water Res; 2009 Sep; 43(16):4079-91. PubMed ID: 19695663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of organic chlorinated compound removal from aqueous matrices by adsorption on activated carbon.
    Pavoni B; Drusian D; Giacometti A; Zanette M
    Water Res; 2006 Nov; 40(19):3571-9. PubMed ID: 16876226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems.
    Dries J; Bastiaens L; Springael D; Kuypers S; Agathos SN; Diels L
    Water Res; 2005 Sep; 39(15):3531-40. PubMed ID: 16095659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 May; 153(1-2):588-99. PubMed ID: 17980486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling.
    Weber A; Ruhl AS; Amos RT
    J Contam Hydrol; 2013 Aug; 151():68-82. PubMed ID: 23743511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation.
    Okawa K; Suzuki K; Takeshita T; Nakano K
    Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Granular activated carbon adsorption and microwave regeneration for the treatment of 2,4,5-trichlorobiphenyl in simulated soil-washing solution.
    Liu X; Yu G; Han W
    J Hazard Mater; 2007 Aug; 147(3):746-51. PubMed ID: 17368933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid removal of flutriafol in water by zero-valent iron powder.
    Ghauch A
    Chemosphere; 2008 Mar; 71(5):816-26. PubMed ID: 18178235
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laboratory tests for reactive barrier design.
    Gusmão AD; de Campos TM; Nobre Mde M; Vargas Edo A
    J Hazard Mater; 2004 Jul; 110(1-3):105-12. PubMed ID: 15177731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predictions of long-term performance of granular iron permeable reactive barriers: field-scale evaluation.
    Jeen SW; Gillham RW; Przepiora A
    J Contam Hydrol; 2011 Apr; 123(1-2):50-64. PubMed ID: 21237528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation of carbon tetrachloride in the presence of zero-valent iron.
    Alvarado JS; Rose C; Lafreniere L
    J Environ Monit; 2010 Aug; 12(8):1524-30. PubMed ID: 20596593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI.
    Patterson BM; Lee M; Bastow TP; Wilson JT; Donn MJ; Furness A; Goodwin B; Manefield M
    J Contam Hydrol; 2016 May; 188():1-11. PubMed ID: 26934432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water.
    Verliefde AR; Heijman SG; Cornelissen ER; Amy G; Van der Bruggen B; van Dijk JC
    Water Res; 2007 Aug; 41(15):3227-40. PubMed ID: 17583761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater.
    Bennett P; Gandhi D; Warner S; Bussey J
    J Hazard Mater; 2007 Nov; 149(3):568-73. PubMed ID: 17689011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation.
    Truex MJ; Macbeth TW; Vermeul VR; Fritz BG; Mendoza DP; Mackley RD; Wietsma TW; Sandberg G; Powell T; Powers J; Pitre E; Michalsen M; Ballock-Dixon SJ; Zhong L; Oostrom M
    Environ Sci Technol; 2011 Jun; 45(12):5346-51. PubMed ID: 21591672
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.