BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15949791)

  • 1. The metabolic effects of thia fatty acids in rat liver depend on the position of the sulfur atom.
    Gudbrandsen OA; Dyrøy E; Bohov P; Skorve J; Berge RK
    Chem Biol Interact; 2005 Jun; 155(1-2):71-81. PubMed ID: 15949791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thia fatty acids with the sulfur atom in even or odd positions have opposite effects on fatty acid catabolism.
    Dyroy E; Wergedahl H; Skorve J; Gudbrandsen OA; Songstad J; Berge RK
    Lipids; 2006 Feb; 41(2):169-77. PubMed ID: 17707983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thia fatty acids, metabolism and metabolic effects.
    Skrede S; Sørensen HN; Larsen LN; Steineger HH; Høvik K; Spydevold OS; Horn R; Bremer J
    Biochim Biophys Acta; 1997 Jan; 1344(2):115-31. PubMed ID: 9030189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The absorption, distribution and biological effects of a modified fatty acid in its free form and as an ethyl ester in rats.
    Gudbrandsen OA; Wergedahl H; Bohov P; Berge RK
    Chem Biol Interact; 2009 May; 179(2-3):227-32. PubMed ID: 18992229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nephrotoxicity and hepatotoxicity of 5,6-dichloro-4-thia-5-hexenoic acid: evidence for fatty acid beta-oxidation-dependent bioactivation.
    Fitzsimmons ME; Baggs RB; Anders MW
    J Pharmacol Exp Ther; 1994 Oct; 271(1):515-23. PubMed ID: 7965751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute modulation of rat hepatic lipid metabolism by sulphur-substituted fatty acid analogues.
    Asiedu DK; Demoz A; Skorve J; Grav HJ; Berge RK
    Biochem Pharmacol; 1995 Mar; 49(7):1013-22. PubMed ID: 7741757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chain length and sulphur position of thia fatty acids on their incorporation into phospholipids in 7800 C1 hepatoma cells and isolated rat hepatocytes, and their effects on fatty acid composition of phospholipids.
    Wu P; Grav HJ; Horn R; Bremer J
    Biochem Pharmacol; 1996 Mar; 51(6):751-8. PubMed ID: 8602870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation. Studies in vivo and in vitro.
    Hovik R; Osmundsen H; Berge R; Aarsland A; Bergseth S; Bremer J
    Biochem J; 1990 Aug; 270(1):167-73. PubMed ID: 2396976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effects of oxygen and sulfur-substituted fatty acids on serum lipids and mitochondrial and peroxisomal fatty acid oxidation in rat.
    Skorve J; Asiedu D; Solbakken M; Gjestdal J; Songstad J; Berge RK
    Biochem Pharmacol; 1992 Feb; 43(4):815-22. PubMed ID: 1540235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo oxidation of [9-14C] cyclic fatty acids derived from linolenic acid in the rat.
    Bretillon L; Loreau O; Sébédio JL; Taran F
    Reprod Nutr Dev; 2006; 46(2):189-93. PubMed ID: 16597424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 3-thia fatty acids on the lipid composition of rat liver, lipoproteins, and heart.
    Frøyland L; Madsen L; Sjursen W; Garras A; Lie O; Songstad J; Rustan AC; Berge RK
    J Lipid Res; 1997 Aug; 38(8):1522-34. PubMed ID: 9300774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medium-chain fatty acids ameliorate insulin resistance caused by high-fat diets in rats.
    Wein S; Wolffram S; Schrezenmeir J; Gasperiková D; Klimes I; Seböková E
    Diabetes Metab Res Rev; 2009 Feb; 25(2):185-94. PubMed ID: 19219861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkylthioacetic acids (3-thia fatty acids) as non-beta-oxidizable fatty acid analogues: a new group of hypolipidemic drugs. III. Dissociation of cholesterol- and triglyceride-lowering effects and the induction of peroxisomal beta-oxidation.
    Aarsland A; Aarsaether N; Bremer J; Berge RK
    J Lipid Res; 1989 Nov; 30(11):1711-8. PubMed ID: 2614273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid molecular species, beta-oxidation, desaturation and elongation of fatty acids in Atlantic salmon hepatocytes: effects of temperature and 3-thia fatty acids.
    Moya-Falcón C; Hvattum E; Tran TN; Thomassen MS; Skorve J; Ruyter B
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Sep; 145(1):68-80. PubMed ID: 16872856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3,5-Diiodo-L-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement.
    Lombardi A; de Lange P; Silvestri E; Busiello RA; Lanni A; Goglia F; Moreno M
    Am J Physiol Endocrinol Metab; 2009 Mar; 296(3):E497-502. PubMed ID: 19116374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices.
    Vickers AE; Bentley P; Fisher RL
    Toxicol In Vitro; 2006 Oct; 20(7):1173-82. PubMed ID: 16545538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver.
    Oliveira DL; Pugine SM; Ferreira MS; Lins PG; Costa EJ; de Melo MP
    Cell Biochem Funct; 2007; 25(2):195-201. PubMed ID: 16317662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes.
    Skrede S; Narce M; Bergseth S; Bremer J
    Biochim Biophys Acta; 1989 Oct; 1005(3):296-302. PubMed ID: 2804058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels.
    Stefanovic-Racic M; Perdomo G; Mantell BS; Sipula IJ; Brown NF; O'Doherty RM
    Am J Physiol Endocrinol Metab; 2008 May; 294(5):E969-77. PubMed ID: 18349115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.