BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15949961)

  • 1. Kinetic studies on the glutathione peroxidase activity of selenium-containing glutathione transferase.
    Yu H; Liu J; Liu X; Zang T; Luo G; Shen J
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jul; 141(3):382-9. PubMed ID: 15949961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel selenium-containing glutathione transferase zeta1-1, the activity of which surpasses the level of some native glutathione peroxidases.
    Zheng K; Board PG; Fei X; Sun Y; Lv S; Yan G; Liu J; Shen J; Luo G
    Int J Biochem Cell Biol; 2008; 40(10):2090-7. PubMed ID: 18373941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered selenium-containing glutaredoxin displays strong glutathione peroxidase activity rivaling natural enzyme.
    Ge Y; Qi Z; Wang Y; Liu X; Li J; Xu J; Liu J; Shen J
    Int J Biochem Cell Biol; 2009 Apr; 41(4):900-6. PubMed ID: 18805505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of selenocysteine-containing glutathione S-transferase in Escherichia coli.
    Jiang Z; Arnér ES; Mu Y; Johansson L; Shi J; Zhao S; Liu S; Wang R; Zhang T; Yan G; Liu J; Shen J; Luo G
    Biochem Biophys Res Commun; 2004 Aug; 321(1):94-101. PubMed ID: 15358220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of selenium-containing glutathione transferase zeta1-1 with high GPX activity prepared in eukaryotic cells.
    Yin L; Song J; Board PG; Yu Y; Han X; Wei J
    J Mol Recognit; 2013 Jan; 26(1):38-45. PubMed ID: 23280616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. Incorporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system.
    Yu HJ; Liu JQ; Bock A; Li J; Luo GM; Shen JC
    J Biol Chem; 2005 Mar; 280(12):11930-5. PubMed ID: 15649895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of selenium-containing abzyme by using chemical mutation.
    Luo GM; Zhu ZQ; Ding L; Gao G; Sun QA; Liu Z; Yang TS; Shen JC
    Biochem Biophys Res Commun; 1994 Feb; 198(3):1240-7. PubMed ID: 8117281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein.
    Liu L; Mao SZ; Liu XM; Huang X; Xu JY; Liu JQ; Luo GM; Shen JC
    Biomacromolecules; 2008 Jan; 9(1):363-8. PubMed ID: 18163571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2.
    Zhang ZR; Bai M; Wang XY; Zhou JM; Perrett S
    J Mol Biol; 2008 Dec; 384(3):641-51. PubMed ID: 18845158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenoglutaredoxin as a glutathione peroxidase mimic.
    Casi G; Roelfes G; Hilvert D
    Chembiochem; 2008 Jul; 9(10):1623-31. PubMed ID: 18548475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semisynthetic glutathione peroxidase with high catalytic efficiency. Selenoglutathione transferase.
    Ren X; Jemth P; Board PG; Luo G; Mannervik B; Liu J; Zhang K; Shen J
    Chem Biol; 2002 Jul; 9(7):789-94. PubMed ID: 12144922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seleno-independent glutathione peroxidases. More than simple antioxidant scavengers.
    Herbette S; Roeckel-Drevet P; Drevet JR
    FEBS J; 2007 May; 274(9):2163-80. PubMed ID: 17419737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of selenium-containing compounds on hepatic chemoprotective enzymes in mice.
    El-Sayed WM; Aboul-Fadl T; Lamb JG; Roberts JC; Franklin MR
    Toxicology; 2006 Mar; 220(2-3):179-88. PubMed ID: 16451816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol cofactors for selenoenzymes and their synthetic mimics.
    Sarma BK; Mugesh G
    Org Biomol Chem; 2008 Mar; 6(6):965-74. PubMed ID: 18327317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of selenocysteine-containing glutathione S-transferase in eukaryote.
    Liu H; Yin L; Board PG; Han X; Fan Z; Fang J; Lu Z; Zhang Y; Wei J
    Protein Expr Purif; 2012 Jul; 84(1):59-63. PubMed ID: 22561244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency.
    Müller C; Wingler K; Brigelius-Flohé R
    Biol Chem; 2003 Jan; 384(1):11-8. PubMed ID: 12674495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of selenocysteine lyase in human tissues and its relationship to tissue selenium concentrations.
    Daher R; Van Lente F
    J Trace Elem Electrolytes Health Dis; 1992 Sep; 6(3):189-94. PubMed ID: 1483038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants.
    Bhabak KP; Mugesh G
    Acc Chem Res; 2010 Nov; 43(11):1408-19. PubMed ID: 20690615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the presumed catalytic triad of a selenium-containing peroxidase by mutational analysis.
    Maiorino M; Aumann KD; Brigelius-Flohé R; Doria D; van den Heuvel J; McCarthy J; Roveri A; Ursini F; Flohé L
    Z Ernahrungswiss; 1998; 37 Suppl 1():118-21. PubMed ID: 9558742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.