BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15949962)

  • 1. Heterologous expression of Escherichia coli ppsA (phosphoenolpyruvate synthetase) and galU (UDP-glucose pyrophosphorylase) genes in Corynebacterium glutamicum, and its impact on trehalose synthesis.
    Padilla L; Agosin E
    Metab Eng; 2005 Jul; 7(4):260-8. PubMed ID: 15949962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum.
    Padilla L; Morbach S; Krämer R; Agosin E
    Appl Environ Microbiol; 2004 Jul; 70(7):3845-54. PubMed ID: 15240254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway.
    Carpinelli J; Krämer R; Agosin E
    Appl Environ Microbiol; 2006 Mar; 72(3):1949-55. PubMed ID: 16517642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose.
    Marolda CL; Valvano MA
    Mol Microbiol; 1996 Dec; 22(5):827-40. PubMed ID: 8971705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum.
    Padilla L; Krämer R; Stephanopoulos G; Agosin E
    Appl Environ Microbiol; 2004 Jan; 70(1):370-6. PubMed ID: 14711665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli].
    Li YH; Liu Y; Wang SC; Tong ZY; Xu QS
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum.
    Wang J; Wen B; Wang J; Xu Q; Zhang C; Chen N; Xie X
    Appl Biochem Biotechnol; 2013 Sep; 171(1):20-30. PubMed ID: 23813403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.
    Lindner SN; Seibold GM; Krämer R; Wendisch VF
    Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose.
    Sasaki M; Teramoto H; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis.
    Boels IC; Ramos A; Kleerebezem M; de Vos WM
    Appl Environ Microbiol; 2001 Jul; 67(7):3033-40. PubMed ID: 11425718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.
    Jorge JM; Leggewie C; Wendisch VF
    Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
    Rittmann D; Lindner SN; Wendisch VF
    Appl Environ Microbiol; 2008 Oct; 74(20):6216-22. PubMed ID: 18757581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Apigenin Glucosides in Engineered
    Amoah OJ; Thapa SB; Ma SY; Nguyen HT; Zakaria MM; Sohng JK
    J Microbiol Biotechnol; 2024 May; 34(5):1154-1163. PubMed ID: 38563097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression.
    Shen T; Liu Q; Xie X; Xu Q; Chen N
    J Biomed Biotechnol; 2012; 2012():605219. PubMed ID: 22791961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putrescine production by engineered Corynebacterium glutamicum.
    Schneider J; Wendisch VF
    Appl Microbiol Biotechnol; 2010 Oct; 88(4):859-68. PubMed ID: 20661733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum.
    Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum.
    Roenneke B; Rosenfeldt N; Derya SM; Novak JF; Marin K; Krämer R; Seibold GM
    Microb Cell Fact; 2018 Jun; 17(1):94. PubMed ID: 29908566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.
    Chin YW; Park JB; Park YC; Kim KH; Seo JH
    Bioprocess Biosyst Eng; 2013 Jun; 36(6):749-56. PubMed ID: 23404100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.