These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 15949962)
1. Heterologous expression of Escherichia coli ppsA (phosphoenolpyruvate synthetase) and galU (UDP-glucose pyrophosphorylase) genes in Corynebacterium glutamicum, and its impact on trehalose synthesis. Padilla L; Agosin E Metab Eng; 2005 Jul; 7(4):260-8. PubMed ID: 15949962 [TBL] [Abstract][Full Text] [Related]
2. Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum. Padilla L; Morbach S; Krämer R; Agosin E Appl Environ Microbiol; 2004 Jul; 70(7):3845-54. PubMed ID: 15240254 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Carpinelli J; Krämer R; Agosin E Appl Environ Microbiol; 2006 Mar; 72(3):1949-55. PubMed ID: 16517642 [TBL] [Abstract][Full Text] [Related]
4. The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose. Marolda CL; Valvano MA Mol Microbiol; 1996 Dec; 22(5):827-40. PubMed ID: 8971705 [TBL] [Abstract][Full Text] [Related]
5. Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum. Padilla L; Krämer R; Stephanopoulos G; Agosin E Appl Environ Microbiol; 2004 Jan; 70(1):370-6. PubMed ID: 14711665 [TBL] [Abstract][Full Text] [Related]
6. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli]. Li YH; Liu Y; Wang SC; Tong ZY; Xu QS Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011 [TBL] [Abstract][Full Text] [Related]
7. Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Wang J; Wen B; Wang J; Xu Q; Zhang C; Chen N; Xie X Appl Biochem Biotechnol; 2013 Sep; 171(1):20-30. PubMed ID: 23813403 [TBL] [Abstract][Full Text] [Related]
8. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Lindner SN; Seibold GM; Krämer R; Wendisch VF Bioeng Bugs; 2011; 2(5):291-5. PubMed ID: 22008639 [TBL] [Abstract][Full Text] [Related]
9. Identification of mannose uptake and catabolism genes in Corynebacterium glutamicum and genetic engineering for simultaneous utilization of mannose and glucose. Sasaki M; Teramoto H; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 Mar; 89(6):1905-16. PubMed ID: 21125267 [TBL] [Abstract][Full Text] [Related]
10. Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Boels IC; Ramos A; Kleerebezem M; de Vos WM Appl Environ Microbiol; 2001 Jul; 67(7):3033-40. PubMed ID: 11425718 [TBL] [Abstract][Full Text] [Related]
11. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Jorge JM; Leggewie C; Wendisch VF Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384 [TBL] [Abstract][Full Text] [Related]
12. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C; Zhou Z; Cai H; Chen Z; Xu H J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [TBL] [Abstract][Full Text] [Related]
13. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Rittmann D; Lindner SN; Wendisch VF Appl Environ Microbiol; 2008 Oct; 74(20):6216-22. PubMed ID: 18757581 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of Apigenin Glucosides in Engineered Amoah OJ; Thapa SB; Ma SY; Nguyen HT; Zakaria MM; Sohng JK J Microbiol Biotechnol; 2024 May; 34(5):1154-1163. PubMed ID: 38563097 [TBL] [Abstract][Full Text] [Related]
15. Improved production of tryptophan in genetically engineered Escherichia coli with TktA and PpsA overexpression. Shen T; Liu Q; Xie X; Xu Q; Chen N J Biomed Biotechnol; 2012; 2012():605219. PubMed ID: 22791961 [TBL] [Abstract][Full Text] [Related]
17. Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum. Ikeda M; Mizuno Y; Awane S; Hayashi M; Mitsuhashi S; Takeno S Appl Microbiol Biotechnol; 2011 May; 90(4):1443-51. PubMed ID: 21452034 [TBL] [Abstract][Full Text] [Related]
18. Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Roenneke B; Rosenfeldt N; Derya SM; Novak JF; Marin K; Krämer R; Seibold GM Microb Cell Fact; 2018 Jun; 17(1):94. PubMed ID: 29908566 [TBL] [Abstract][Full Text] [Related]
19. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose. Chin YW; Park JB; Park YC; Kim KH; Seo JH Bioprocess Biosyst Eng; 2013 Jun; 36(6):749-56. PubMed ID: 23404100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]