These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 15950157)
1. Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Doehlemann G; Molitor F; Hahn M Fungal Genet Biol; 2005 Jul; 42(7):601-10. PubMed ID: 15950157 [TBL] [Abstract][Full Text] [Related]
2. The Botrytis cinerea hexokinase, Hxk1, but not the glucokinase, Glk1, is required for normal growth and sugar metabolism, and for pathogenicity on fruits. Rui O; Hahn M Microbiology (Reading); 2007 Aug; 153(Pt 8):2791-2802. PubMed ID: 17660443 [TBL] [Abstract][Full Text] [Related]
3. Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Del Sorbo G; Ruocco M; Schoonbeek HJ; Scala F; Pane C; Vinale F; De Waard MA Mycol Res; 2008 Jun; 112(Pt 6):737-46. PubMed ID: 18515055 [TBL] [Abstract][Full Text] [Related]
4. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
5. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol. Dulermo T; Rascle C; Chinnici G; Gout E; Bligny R; Cotton P New Phytol; 2009; 183(4):1149-1162. PubMed ID: 19500266 [TBL] [Abstract][Full Text] [Related]
6. Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Doehlemann G; Berndt P; Hahn M Mol Microbiol; 2006 Feb; 59(3):821-35. PubMed ID: 16420354 [TBL] [Abstract][Full Text] [Related]
7. Multiple hexose transporters of Schizosaccharomyces pombe. Heiland S; Radovanovic N; Höfer M; Winderickx J; Lichtenberg H J Bacteriol; 2000 Apr; 182(8):2153-62. PubMed ID: 10735857 [TBL] [Abstract][Full Text] [Related]
8. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Turrion-Gomez JL; Eslava AP; Benito EP Fungal Genet Biol; 2010 May; 47(5):484-96. PubMed ID: 20223291 [TBL] [Abstract][Full Text] [Related]
9. Cyclophilin BcCyp2 Regulates Infection-Related Development to Facilitate Virulence of the Gray Mold Fungus Sun J; Sun CH; Chang HW; Yang S; Liu Y; Zhang MZ; Hou J; Zhang H; Li GH; Qin QM Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33567582 [TBL] [Abstract][Full Text] [Related]
10. Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Diezemann A; Boles E Curr Genet; 2003 Jul; 43(4):281-8. PubMed ID: 12677461 [TBL] [Abstract][Full Text] [Related]
11. The Autophagy Gene Ren W; Liu N; Sang C; Shi D; Zhou M; Chen C; Qin Q; Chen W Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29572212 [TBL] [Abstract][Full Text] [Related]
12. The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Zheng L; Campbell M; Murphy J; Lam S; Xu JR Mol Plant Microbe Interact; 2000 Jul; 13(7):724-32. PubMed ID: 10875333 [TBL] [Abstract][Full Text] [Related]
13. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related]
14. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
15. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC Microbiology (Reading); 2011 Feb; 157(Pt 2):601-608. PubMed ID: 21051487 [TBL] [Abstract][Full Text] [Related]
16. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Gronover CS; Kasulke D; Tudzynski P; Tudzynski B Mol Plant Microbe Interact; 2001 Nov; 14(11):1293-302. PubMed ID: 11763127 [TBL] [Abstract][Full Text] [Related]
17. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Lecompte F; Nicot PC; Ripoll J; Abro MA; Raimbault AK; Lopez-Lauri F; Bertin N Ann Bot; 2017 Mar; 119(5):931-943. PubMed ID: 28065923 [TBL] [Abstract][Full Text] [Related]
18. ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii. Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC PLoS One; 2013; 8(7):e68165. PubMed ID: 23844167 [TBL] [Abstract][Full Text] [Related]
19. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of diacylglycerol O-acyl transferase 2 gene to decipher its role in virulence of Botrytis cinerea. Sharma E; Tayal P; Anand G; Mathur P; Kapoor R Curr Genet; 2018 Apr; 64(2):443-457. PubMed ID: 28940057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]