These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 15950173)
1. Photosynthetic activity of far-red light in green plants. Pettai H; Oja V; Freiberg A; Laisk A Biochim Biophys Acta; 2005 Jul; 1708(3):311-21. PubMed ID: 15950173 [TBL] [Abstract][Full Text] [Related]
2. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Laisk A; Oja V; Eichelmann H; Dall'Osto L Biochim Biophys Acta; 2014 Feb; 1837(2):315-25. PubMed ID: 24333386 [TBL] [Abstract][Full Text] [Related]
3. Electron transport through photosystem II in leaves during light pulses: acceptor resistance increases with nonphotochemical excitation quenching. Laisk A; Oja V Biochim Biophys Acta; 2000 Nov; 1460(2-3):255-67. PubMed ID: 11106767 [TBL] [Abstract][Full Text] [Related]
4. Impact of energy limitations on function and resilience in long-wavelength Photosystem II. Viola S; Roseby W; Santabarbara S; Nürnberg D; Assunção R; Dau H; Sellés J; Boussac A; Fantuzzi A; Rutherford AW Elife; 2022 Jul; 11():. PubMed ID: 35852834 [TBL] [Abstract][Full Text] [Related]
5. Optimization and evolution of light harvesting in photosynthesis: the role of antenna chlorophyll conserved between photosystem II and photosystem I. Vasil'ev S; Bruce D Plant Cell; 2004 Nov; 16(11):3059-68. PubMed ID: 15486105 [TBL] [Abstract][Full Text] [Related]
6. The long-wavelength limit of plant photosynthesis. Pettai H; Oja V; Freiberg A; Laisk A FEBS Lett; 2005 Jul; 579(18):4017-9. PubMed ID: 16004989 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. Laisk A; Eichelmann H; Oja V Biochim Biophys Acta; 2015; 1847(6-7):565-75. PubMed ID: 25800682 [TBL] [Abstract][Full Text] [Related]
8. Photosystem II antennae are not energetically connected: evidence based on flash-induced O2 evolution and chlorophyll fluorescence in sunflower leaves. Oja V; Laisk A Photosynth Res; 2012 Oct; 114(1):15-28. PubMed ID: 22890327 [TBL] [Abstract][Full Text] [Related]
9. Oxygen evolution and chlorophyll fluorescence from multiple turnover light pulses: charge recombination in photosystem II in sunflower leaves. Laisk A; Oja V; Eichelmann H Photosynth Res; 2012 Sep; 113(1-3):145-55. PubMed ID: 22644479 [TBL] [Abstract][Full Text] [Related]
10. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
11. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Krausz E; Hughes JL; Smith P; Pace R; Peterson Arsköld S Photochem Photobiol Sci; 2005 Sep; 4(9):744-53. PubMed ID: 16121287 [TBL] [Abstract][Full Text] [Related]
12. Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. Kosugi M; Ozawa SI; Takahashi Y; Kamei Y; Itoh S; Kudoh S; Kashino Y; Koike H Biochim Biophys Acta Bioenerg; 2020 Feb; 1861(2):148139. PubMed ID: 31825812 [TBL] [Abstract][Full Text] [Related]
13. Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Laisk A; Talts E; Oja V; Eichelmann H; Peterson RB Photosynth Res; 2010 Feb; 103(2):79-95. PubMed ID: 20039131 [TBL] [Abstract][Full Text] [Related]
14. Alteration of photosystem II properties with non-photochemical excitation quenching. Laisk A; Oja V Philos Trans R Soc Lond B Biol Sci; 2000 Oct; 355(1402):1405-18. PubMed ID: 11127995 [TBL] [Abstract][Full Text] [Related]
15. Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants. Yordanov I; Goltsev V; Stefanov D; Chernev P; Zaharieva I; Kirova M; Gecheva V; Strasser RJ J Plant Physiol; 2008 Dec; 165(18):1954-63. PubMed ID: 18586352 [TBL] [Abstract][Full Text] [Related]
16. Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Kowalczyk N; Rappaport F; Boyen C; Wollman FA; Collén J; Joliot P Biochim Biophys Acta; 2013 Jul; 1827(7):834-42. PubMed ID: 23624348 [TBL] [Abstract][Full Text] [Related]
17. The photochemistry in Photosystem II at 5 K is different in visible and far-red light. Mokvist F; Sjöholm J; Mamedov F; Styring S Biochemistry; 2014 Jul; 53(26):4228-38. PubMed ID: 24918985 [TBL] [Abstract][Full Text] [Related]
19. Quantification of excitation energy distribution between photosystems based on a mechanistic model of photosynthetic electron transport. Murakami K; Matsuda R; Fujiwara K Plant Cell Environ; 2018 Jan; 41(1):148-159. PubMed ID: 28548208 [TBL] [Abstract][Full Text] [Related]
20. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Solhaug KA; Xie L; Gauslaa Y Plant Cell Physiol; 2014 Aug; 55(8):1404-14. PubMed ID: 24847151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]