These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 15950279)
1. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Aguilar CA; Lu Y; Mao S; Chen S Biomaterials; 2005 Dec; 26(36):7642-9. PubMed ID: 15950279 [TBL] [Abstract][Full Text] [Related]
2. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Shen H; Hu X; Yang F; Bei J; Wang S Biomaterials; 2007 Oct; 28(29):4219-30. PubMed ID: 17618682 [TBL] [Abstract][Full Text] [Related]
3. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
4. Novel photopolymerizable biodegradable triblock polymers for tissue engineering scaffolds: synthesis and characterization. Chan-Park MB; Zhu AP; Shen JY; Fan AL Macromol Biosci; 2004 Jul; 4(7):665-73. PubMed ID: 15468260 [TBL] [Abstract][Full Text] [Related]
5. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
6. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of biocompatible polymer interlayers on titanium implant materials. Adden N; Gamble LJ; Castner DG; Hoffmann A; Gross G; Menzel H Biomacromolecules; 2006 Sep; 7(9):2552-9. PubMed ID: 16961317 [TBL] [Abstract][Full Text] [Related]
8. Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Lim YC; Johnson J; Fei Z; Wu Y; Farson DF; Lannutti JJ; Choi HW; Lee LJ Biotechnol Bioeng; 2011 Jan; 108(1):116-26. PubMed ID: 20812254 [TBL] [Abstract][Full Text] [Related]
9. UV surface modification of a new nanocomposite polymer to improve cytocompatibility. Olbrich M; Punshon G; Frischauf I; Salacinski HJ; Rebollar E; Romanin C; Seifalian AM; Heitz J J Biomater Sci Polym Ed; 2007; 18(4):453-68. PubMed ID: 17540119 [TBL] [Abstract][Full Text] [Related]
10. The effect of chitosan on the in vitro biological performance of chitosan-poly(butylene succinate) blends. Coutinho DF; Pashkuleva IH; Alves CM; Marques AP; Neves NM; Reis RL Biomacromolecules; 2008 Apr; 9(4):1139-45. PubMed ID: 18330991 [TBL] [Abstract][Full Text] [Related]
11. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan. Zhang L; Dou S; Li Y; Yuan Y; Ji Y; Wang Y; Yang Y Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2626-31. PubMed ID: 23623077 [TBL] [Abstract][Full Text] [Related]
13. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434 [TBL] [Abstract][Full Text] [Related]
14. Laser surface modification of poly(epsilon-caprolactone) (PCL) membrane for tissue engineering applications. Tiaw KS; Goh SW; Hong M; Wang Z; Lan B; Teoh SH Biomaterials; 2005 Mar; 26(7):763-9. PubMed ID: 15350781 [TBL] [Abstract][Full Text] [Related]
15. Surface property and in vitro biodegradation of microspheres fabricated by poly(epsilon-caprolactone-b-ethylene oxide) diblock copolymers. Yu G; Zhang Y; Shi X; Li Z; Gan Z J Biomed Mater Res A; 2008 Mar; 84(4):926-39. PubMed ID: 17647229 [TBL] [Abstract][Full Text] [Related]
16. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(epsilon-caprolactone) blends for tissue engineering applications in the form of hollow fibers. Chiono V; Ciardelli G; Vozzi G; Sotgiu MG; Vinci B; Domenici C; Giusti P J Biomed Mater Res A; 2008 Jun; 85(4):938-53. PubMed ID: 17896770 [TBL] [Abstract][Full Text] [Related]
17. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. Christenson EM; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669 [TBL] [Abstract][Full Text] [Related]
18. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Azevedo HS; Gama FM; Reis RL Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899 [TBL] [Abstract][Full Text] [Related]
19. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings. Westedt U; Wittmar M; Hellwig M; Hanefeld P; Greiner A; Schaper AK; Kissel T J Control Release; 2006 Mar; 111(1-2):235-46. PubMed ID: 16466824 [TBL] [Abstract][Full Text] [Related]
20. Pore size distributions of biodegradable polymer microparticles in aqueous environments measured by NMR cryoporometry. Petrov O; Furó I; Schuleit M; Domanig R; Plunkett M; Daicic J Int J Pharm; 2006 Feb; 309(1-2):157-62. PubMed ID: 16386391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]