BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15950306)

  • 1. Cloning and expression of the malolactic gene of Pediococcus damnosus NCFB1832 in Saccharomyces cerevisiae.
    Bauer R; Volschenk H; Dicks LM
    J Biotechnol; 2005 Sep; 118(4):353-62. PubMed ID: 15950306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering pathways for malate degradation in Saccharomyces cerevisiae.
    Volschenk H; Viljoen M; Grobler J; Petzold B; Bauer F; Subden RE; Young RA; Lonvaud A; Denayrolles M; van Vuuren HJ
    Nat Biotechnol; 1997 Mar; 15(3):253-7. PubMed ID: 9062925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of malolactic fermentation by Pediococcus damnosus on the composition and sensory profile of Albariño and Caiño white wines.
    Juega M; Costantini A; Bonello F; Cravero MC; Martinez-Rodriguez AJ; Carrascosa AV; Garcia-Moruno E
    J Appl Microbiol; 2014 Mar; 116(3):586-95. PubMed ID: 24206231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional expression in Saccharomyces cerevisiae of the Lactococcus lactis mleS gene encoding the malolactic enzyme.
    Denayrolles M; Aigle M; Lonvaud-Funel A
    FEMS Microbiol Lett; 1995 Jan; 125(1):37-43. PubMed ID: 7867919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe.
    Ansanay V; Dequin S; Camarasa C; Schaeffer V; Grivet JP; Blondin B; Salmon JM; Barre P
    Yeast; 1996 Mar; 12(3):215-25. PubMed ID: 8904333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation.
    Bony M; Bidart F; Camarasa C; Ansanay V; Dulau L; Barre P; Dequin S
    FEBS Lett; 1997 Jun; 410(2-3):452-6. PubMed ID: 9237681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of partial malolactic enzyme gene sequences for phylogenetic analysis of some lactic acid bacteria species and relationships with the malic enzyme.
    Groisillier A; Lonvaud-Funel A
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1417-28. PubMed ID: 10555321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of malolactic wine yeast.
    Husnik JI; Volschenk H; Bauer J; Colavizza D; Luo Z; van Vuuren HJ
    Metab Eng; 2006 Jul; 8(4):315-23. PubMed ID: 16621641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis.
    Ansanay V; Dequin S; Blondin B; Barre P
    FEBS Lett; 1993 Oct; 332(1-2):74-80. PubMed ID: 8405453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malolactic fermentation and secondary metabolite production by Oenoccocus oeni strains in low pH wines.
    Ruiz P; Izquierdo PM; Seseña S; García E; Palop ML
    J Food Sci; 2012 Oct; 77(10):M579-85. PubMed ID: 22924897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation.
    Osborne JP; Edwards CG
    Int J Food Microbiol; 2007 Aug; 118(1):27-34. PubMed ID: 17610976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of malolactic activity is a characteristic of H+-ATPase-deficient mutants of the lactic acid bacterium Oenococcus oeni.
    Galland D; Tourdot-Maréchal R; Abraham M; Chu KS; Guzzo J
    Appl Environ Microbiol; 2003 Apr; 69(4):1973-9. PubMed ID: 12676672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic characterization of malolactic fermentation and fermentative behaviors of wine yeasts in grape wine.
    Son HS; Hwang GS; Park WM; Hong YS; Lee CH
    J Agric Food Chem; 2009 Jun; 57(11):4801-9. PubMed ID: 19441817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of new research and technologies for malolactic fermentation in wine.
    Sumby KM; Grbin PR; Jiranek V
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8111-32. PubMed ID: 25142694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions.
    Miller BJ; Franz CM; Cho GS; du Toit M
    Curr Microbiol; 2011 Jun; 62(6):1682-8. PubMed ID: 21404095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and technological properties of Oenococcus oeni strains from wine spontaneous malolactic fermentations: a framework for selection of new starter cultures.
    Solieri L; Genova F; De Paola M; Giudici P
    J Appl Microbiol; 2010 Jan; 108(1):285-98. PubMed ID: 19614854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters.
    Coucheney F; Desroche N; Bou M; Tourdot-Maréchal R; Dulau L; Guzzo J
    Int J Food Microbiol; 2005 Dec; 105(3):463-70. PubMed ID: 16081179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives.
    Alexandre H; Costello PJ; Remize F; Guzzo J; Guilloux-Benatier M
    Int J Food Microbiol; 2004 Jun; 93(2):141-54. PubMed ID: 15135953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of lactic acid populations associated with wine spoilage.
    Beneduce L; Spano G; Vernile A; Tarantino D; Massa S
    J Basic Microbiol; 2004; 44(1):10-6. PubMed ID: 14768022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.