These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 15950344)
1. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Brown S; Christensen B; Lombi E; McLaughlin M; McGrath S; Colpaert J; Vangronsveld J Environ Pollut; 2005 Nov; 138(1):34-45. PubMed ID: 15950344 [TBL] [Abstract][Full Text] [Related]
2. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Friesl W; Friedl J; Platzer K; Horak O; Gerzabek MH Environ Pollut; 2006 Nov; 144(1):40-50. PubMed ID: 16515824 [TBL] [Abstract][Full Text] [Related]
3. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Li J; Xie ZM; Zhu YG; Naidu R J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871 [TBL] [Abstract][Full Text] [Related]
4. Restoration of high zinc and lead tailings with municipal biosolids and lime: a field study. Brown S; Svendsen A; Henry C J Environ Qual; 2009; 38(6):2189-97. PubMed ID: 19875774 [TBL] [Abstract][Full Text] [Related]
5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Kuo S; Lai MS; Lin CW Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295 [TBL] [Abstract][Full Text] [Related]
6. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Ruttens A; Mench M; Colpaert JV; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):524-32. PubMed ID: 16542762 [TBL] [Abstract][Full Text] [Related]
7. Field test of in situ soil amendments at the Tar Creek National Priorities List Superfund site. Brown SL; Compton H; Basta NT J Environ Qual; 2007; 36(6):1627-34. PubMed ID: 17940262 [TBL] [Abstract][Full Text] [Related]
8. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Lee TM; Lai HY; Chen ZS Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390 [TBL] [Abstract][Full Text] [Related]
9. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Chen S; Xu M; Ma Y; Yang J Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186 [TBL] [Abstract][Full Text] [Related]
11. Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Mench M; Vangronsveld J; Beckx C; Ruttens A Environ Pollut; 2006 Nov; 144(1):51-61. PubMed ID: 16522348 [TBL] [Abstract][Full Text] [Related]
12. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc, and cadmium. Brown S; Chaney R; Hallfrisch J; Ryan JA; Berti WR J Environ Qual; 2004; 33(2):522-31. PubMed ID: 15074803 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
14. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
15. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Pardo T; Clemente R; Bernal MP Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902 [TBL] [Abstract][Full Text] [Related]
16. Remediation of metal polluted mine soil with compost: co-composting versus incorporation. Tandy S; Healey JR; Nason MA; Williamson JC; Jones DL Environ Pollut; 2009 Feb; 157(2):690-7. PubMed ID: 18819736 [TBL] [Abstract][Full Text] [Related]
17. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Ownby DR; Galvan KA; Lydy MJ Environ Pollut; 2005 Jul; 136(2):315-21. PubMed ID: 15840539 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Mignardi S; Corami A; Ferrini V Chemosphere; 2012 Jan; 86(4):354-60. PubMed ID: 22024096 [TBL] [Abstract][Full Text] [Related]
19. Accumulation of zinc, cadmium, and lead in four populations of Sedum alfredii growing on lead/zinc mine spoils. Deng DM; Deng JC; Li JT; Zhang J; Hu M; Lin Z; Liao B J Integr Plant Biol; 2008 Jun; 50(6):691-8. PubMed ID: 18713409 [TBL] [Abstract][Full Text] [Related]
20. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]