These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 15950507)

  • 1. Similarities among receptor pockets and among compounds: analysis and application to in silico ligand screening.
    Fukunishi Y; Mikami Y; Nakamura H
    J Mol Graph Model; 2005 Sep; 24(1):34-45. PubMed ID: 15950507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple target screening method for robust and accurate in silico ligand screening.
    Fukunishi Y; Mikami Y; Kubota S; Nakamura H
    J Mol Graph Model; 2006 Sep; 25(1):61-70. PubMed ID: 16376595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of protein-compound docking scores by using amino-acid sequence similarities of proteins.
    Fukunishi Y; Nakamura H
    J Chem Inf Model; 2008 Jan; 48(1):148-56. PubMed ID: 18166019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding ligands for G protein-coupled receptors based on the protein-compound affinity matrix.
    Fukunishi Y; Kubota S; Nakamura H
    J Mol Graph Model; 2007 Jan; 25(5):633-43. PubMed ID: 16777448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions.
    Ruvinsky AM
    J Comput Chem; 2007 Jun; 28(8):1364-72. PubMed ID: 17342720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-silico drug screening method based on the protein-compound affinity matrix using the factor selection technique.
    Murali S; Hojo S; Tsujishita H; Nakamura H; Fukunishi Y
    Eur J Med Chem; 2007 Jul; 42(7):966-76. PubMed ID: 17307278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of high throughput virtual screening by combining shape-matching and docking methods.
    Lee HS; Choi J; Kufareva I; Abagyan R; Filikov A; Yang Y; Yoon S
    J Chem Inf Model; 2008 Mar; 48(3):489-97. PubMed ID: 18302357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient in silico screening method based on the protein-compound affinity matrix and its application to the design of a focused library for cytochrome P450 (CYP) ligands.
    Fukunishi Y; Hojo S; Nakamura H
    J Chem Inf Model; 2006; 46(6):2610-22. PubMed ID: 17125201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening.
    Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T
    J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification and comparison of ligand-binding sites derived from grid-mapped knowledge-based potentials.
    Hoppe C; Steinbeck C; Wohlfahrt G
    J Mol Graph Model; 2006 Mar; 24(5):328-40. PubMed ID: 16260161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear hormone receptor targeted virtual screening.
    Schapira M; Abagyan R; Totrov M
    J Med Chem; 2003 Jul; 46(14):3045-59. PubMed ID: 12825943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-based approach to in silico pharmacology: nuclear receptor profiling.
    Mestres J; Martín-Couce L; Gregori-Puigjané E; Cases M; Boyer S
    J Chem Inf Model; 2006; 46(6):2725-36. PubMed ID: 17125212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RosettaLigand docking with full ligand and receptor flexibility.
    Davis IW; Baker D
    J Mol Biol; 2009 Jan; 385(2):381-92. PubMed ID: 19041878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise reduction method for molecular interaction energy: application to in silico drug screening and in silico target protein screening.
    Fukunishi Y; Kubota S; Nakamura H
    J Chem Inf Model; 2006; 46(5):2071-84. PubMed ID: 16995738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerations in compound database preparation--"hidden" impact on virtual screening results.
    Knox AJ; Meegan MJ; Carta G; Lloyd DG
    J Chem Inf Model; 2005; 45(6):1908-19. PubMed ID: 16309298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards in silico lead optimization: scores from ensembles of protein/ligand conformations reliably correlate with biological activity.
    Popov VM; Yee WA; Anderson AC
    Proteins; 2007 Feb; 66(2):375-87. PubMed ID: 17078091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field-based comparison of ligand and coactivator binding sites of nuclear receptors.
    Wohlfahrt G; Sipilä J; Pietilä LO
    Biopolymers; 2009 Oct; 91(10):884-94. PubMed ID: 19582836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual screening and scaffold hopping based on GRID molecular interaction fields.
    Ahlström MM; Ridderström M; Luthman K; Zamora I
    J Chem Inf Model; 2005; 45(5):1313-23. PubMed ID: 16180908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving virtual screening performance against conformational variations of receptors by shape matching with ligand binding pocket.
    Lee HS; Lee CS; Kim JS; Kim DH; Choe H
    J Chem Inf Model; 2009 Nov; 49(11):2419-28. PubMed ID: 19852439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.