These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Blomstedt CK; O'Donnell NH; Bjarnholt N; Neale AD; Hamill JD; Møller BL; Gleadow RM Plant Cell Physiol; 2016 Feb; 57(2):373-86. PubMed ID: 26493517 [TBL] [Abstract][Full Text] [Related]
5. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Bak S; Olsen CE; Halkier BA; Møller BL Plant Physiol; 2000 Aug; 123(4):1437-48. PubMed ID: 10938360 [TBL] [Abstract][Full Text] [Related]
6. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Kristensen C; Morant M; Olsen CE; Ekstrøm CT; Galbraith DW; Møller BL; Bak S Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1779-84. PubMed ID: 15665094 [TBL] [Abstract][Full Text] [Related]
7. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Franks TK; Powell KS; Choimes S; Marsh E; Iocco P; Sinclair BJ; Ford CM; van Heeswijck R Transgenic Res; 2006 Apr; 15(2):181-95. PubMed ID: 16604459 [TBL] [Abstract][Full Text] [Related]
8. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Blomstedt CK; Gleadow RM; O'Donnell N; Naur P; Jensen K; Laursen T; Olsen CE; Stuart P; Hamill JD; Møller BL; Neale AD Plant Biotechnol J; 2012 Jan; 10(1):54-66. PubMed ID: 21880107 [TBL] [Abstract][Full Text] [Related]
9. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Tattersall DB; Bak S; Jones PR; Olsen CE; Nielsen JK; Hansen ML; Høj PB; Møller BL Science; 2001 Sep; 293(5536):1826-8. PubMed ID: 11474068 [TBL] [Abstract][Full Text] [Related]
10. [Research progress in genetic engineering of plant secondary metabolism]. Yang ZR; Mao X; Li RZ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):11-8. PubMed ID: 15692173 [TBL] [Abstract][Full Text] [Related]
11. Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice. Mitsuda N; Hiratsu K; Todaka D; Nakashima K; Yamaguchi-Shinozaki K; Ohme-Takagi M Plant Biotechnol J; 2006 May; 4(3):325-32. PubMed ID: 17147638 [TBL] [Abstract][Full Text] [Related]
12. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. Gnanasekaran T; Karcher D; Nielsen AZ; Martens HJ; Ruf S; Kroop X; Olsen CE; Motawie MS; Pribil M; Møller BL; Bock R; Jensen PE J Exp Bot; 2016 Apr; 67(8):2495-506. PubMed ID: 26969746 [TBL] [Abstract][Full Text] [Related]
13. Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Bak S; Olsen CE; Petersen BL; Møller BL; Halkier BA Plant J; 1999 Dec; 20(6):663-71. PubMed ID: 10652138 [TBL] [Abstract][Full Text] [Related]
14. Constitutive accumulation of cis-piceid in transgenic Arabidopsis overexpressing a sorghum stilbene synthase gene. Yu CK; Lam CN; Springob K; Schmidt J; Chu IK; Lo C Plant Cell Physiol; 2006 Jul; 47(7):1017-21. PubMed ID: 16731548 [TBL] [Abstract][Full Text] [Related]
15. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. Nielsen LJ; Stuart P; Pičmanová M; Rasmussen S; Olsen CE; Harholt J; Møller BL; Bjarnholt N BMC Genomics; 2016 Dec; 17(1):1021. PubMed ID: 27964718 [TBL] [Abstract][Full Text] [Related]
17. Cyanogenesis in the Cowan M; Møller BL; Norton S; Knudsen C; Crocoll C; Furtado A; Henry R; Blomstedt C; Gleadow RM Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052482 [TBL] [Abstract][Full Text] [Related]
18. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation. De Nicola GR; Leoni O; Malaguti L; Bernardi R; Lazzeri L J Agric Food Chem; 2011 Aug; 59(15):8065-9. PubMed ID: 21707058 [TBL] [Abstract][Full Text] [Related]
19. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. O'Donnell NH; Møller BL; Neale AD; Hamill JD; Blomstedt CK; Gleadow RM Plant Physiol Biochem; 2013 Dec; 73():83-92. PubMed ID: 24080394 [TBL] [Abstract][Full Text] [Related]
20. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum. Gleadow RM; Møldrup ME; O'Donnell NH; Stuart PN J Sci Food Agric; 2012 Aug; 92(11):2234-8. PubMed ID: 22700371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]