BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15950752)

  • 1. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum.
    Lardy B; Bof M; Aubry L; Paclet MH; Morel F; Satre M; Klein G
    Biochim Biophys Acta; 2005 Jun; 1744(2):199-212. PubMed ID: 15950752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes.
    Scott B
    Mol Microbiol; 2015 Mar; 95(6):910-3. PubMed ID: 25620385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species.
    Sumimoto H
    FEBS J; 2008 Jul; 275(13):3249-77. PubMed ID: 18513324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi.
    Lacaze I; Lalucque H; Siegmund U; Silar P; Brun S
    Mol Microbiol; 2015 Mar; 95(6):1006-24. PubMed ID: 25424886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and sequencing of the bovine flavocytochrome b subunit proteins, gp91-phox and p22-phox: comparison with other known flavocytochrome b sequences.
    Davis AR; Mascolo PL; Bunger PL; Sipes KM; Quinn MT
    J Leukoc Biol; 1998 Jul; 64(1):114-23. PubMed ID: 9665285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of lipid environment to NADPH oxidase activity: influence of sterol.
    Souabni H; Machillot P; Baciou L
    Biochimie; 2014 Dec; 107 Pt A():33-42. PubMed ID: 25448770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the small GTPase Rac in p22phox-dependent NADPH oxidases.
    Miyano K; Sumimoto H
    Biochimie; 2007 Sep; 89(9):1133-44. PubMed ID: 17583407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of H2O2-forming NADH oxidases from Archaeoglobus fulgidus.
    Kengen SW; van der Oost J; de Vos WM
    Eur J Biochem; 2003 Jul; 270(13):2885-94. PubMed ID: 12823559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Linked glycosylation of the superoxide-producing NADPH oxidase Nox1.
    Miyano K; Sumimoto H
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1060-5. PubMed ID: 24365146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox.
    Leusen JH; de Boer M; Bolscher BG; Hilarius PM; Weening RS; Ochs HD; Roos D; Verhoeven AJ
    J Clin Invest; 1994 May; 93(5):2120-6. PubMed ID: 8182143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the membrane topology of the phagocyte NADPH oxidase: characterization of an anti-gp91-phox conformational monoclonal antibody.
    Campion Y; Paclet MH; Jesaitis AJ; Marques B; Grichine A; Berthier S; Lenormand JL; Lardy B; Stasia MJ; Morel F
    Biochimie; 2007 Sep; 89(9):1145-58. PubMed ID: 17397983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcgammaIIA receptor-induced phagocytosis.
    Suh CI; Stull ND; Li XJ; Tian W; Price MO; Grinstein S; Yaffe MB; Atkinson S; Dinauer MC
    J Exp Med; 2006 Aug; 203(8):1915-25. PubMed ID: 16880255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a thermolabile component of the human neutrophil NADPH oxidase. A model for chronic granulomatous disease caused by deficiency of the p67-phox cytosolic component.
    Erickson RW; Malawista SE; Garrett MC; Van Blaricom G; Leto TL; Curnutte JT
    J Clin Invest; 1992 May; 89(5):1587-95. PubMed ID: 1314852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione is required for growth and prespore cell differentiation in Dictyostelium.
    Kim BJ; Choi CH; Lee CH; Jeong SY; Kim JS; Kim BY; Yim HS; Kang SO
    Dev Biol; 2005 Aug; 284(2):387-98. PubMed ID: 15993406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of novel superoxide-producing NAD(P)H oxidases.
    Takeya R; Sumimoto H
    Antioxid Redox Signal; 2006; 8(9-10):1523-32. PubMed ID: 16987008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.
    Filip-Ciubotaru F; Manciuc C; Stoleriu G; Foia L
    Rev Med Chir Soc Med Nat Iasi; 2016; 120(1):29-33. PubMed ID: 27125069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The domain organization of p67 phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes.
    Yuzawa S; Miyano K; Honbou K; Inagaki F; Sumimoto H
    J Innate Immun; 2009; 1(6):543-55. PubMed ID: 20375610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox).
    Biberstine-Kinkade KJ; DeLeo FR; Epstein RI; LeRoy BA; Nauseef WM; Dinauer MC
    J Biol Chem; 2001 Aug; 276(33):31105-12. PubMed ID: 11413138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
    Takemoto D; Tanaka A; Scott B
    Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NADPH oxidase activity and cytochrome b558 content of human Epstein-Barr-virus-transformed B lymphocytes correlate with expression of genes encoding components of the oxidase system.
    Condino-Neto A; Newburger PE
    Arch Biochem Biophys; 1998 Dec; 360(2):158-64. PubMed ID: 9851826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.