BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1085 related articles for article (PubMed ID: 15950756)

  • 21. Protective effects of MK-801 on methylmercury-induced neuronal injury in rat cerebral cortex: involvement of oxidative stress and glutamate metabolism dysfunction.
    Xu B; Xu ZF; Deng Y; Liu W; Yang HB; Wei YG
    Toxicology; 2012 Oct; 300(3):112-20. PubMed ID: 22722016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport.
    Shanker G; Aschner M
    J Neurosci Res; 2001 Dec; 66(5):998-1002. PubMed ID: 11746429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures.
    Kaur P; Heggland I; Aschner M; Syversen T
    Neurotoxicology; 2008 Nov; 29(6):978-87. PubMed ID: 18619488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release.
    Aschner M; Conklin DR; Yao CP; Allen JW; Tan KH
    Brain Res; 1998 Dec; 813(2):254-61. PubMed ID: 9838151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells.
    Graff RD; Philbert MA; Lowndes HE; Reuhl KR
    Toxicol Appl Pharmacol; 1993 May; 120(1):20-8. PubMed ID: 8511779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Harmonization of Mangiferin on methylmercury engendered mitochondrial dysfunction.
    Das S; Paul A; Mumbrekar KD; Rao SB
    Environ Toxicol; 2017 Feb; 32(2):630-644. PubMed ID: 28071871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms involved in the protective effect of selenocystine against methylmercury-induced cell death in human HepG2 cells.
    Cordero-Herrera I; Cuello S; Goya L; Madrid Y; Bravo L; Cámara C; Ramos S
    Food Chem Toxicol; 2013 Sep; 59():554-63. PubMed ID: 23838314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.
    Kaur P; Schulz K; Aschner M; Syversen T
    Toxicol Sci; 2007 Dec; 100(2):423-32. PubMed ID: 17728287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The consequences of methylmercury exposure on interactive functions between astrocytes and neurons.
    Allen JW; Shanker G; Tan KH; Aschner M
    Neurotoxicology; 2002 Dec; 23(6):755-9. PubMed ID: 12520765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Additive pro-oxidative effects of methylmercury and ebselen in liver from suckling rat pups.
    Farina M; Soares FA; Zeni G; Souza DO; Rocha JB
    Toxicol Lett; 2004 Feb; 146(3):227-35. PubMed ID: 14687760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ.
    Yang B; Yin C; Zhou Y; Wang Q; Jiang Y; Bai Y; Qian H; Xing G; Wang S; Li F; Feng Y; Zhang Y; Cai J; Aschner M; Lu R
    Toxicology; 2019 Sep; 425():152248. PubMed ID: 31330227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protective effect of a novel peptide against methylmercury-induced toxicity in rat primary astrocytes.
    Wormser U; Brodsky B; Milatovic D; Finkelstein Y; Farina M; Rocha JB; Aschner M
    Neurotoxicology; 2012 Aug; 33(4):763-8. PubMed ID: 22186600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevention of methylmercury-induced mitochondrial depolarization, glutathione depletion and cell death by 15-deoxy-delta-12,14-prostaglandin J(2).
    Chang JY; Tsai PF
    Neurotoxicology; 2008 Nov; 29(6):1054-61. PubMed ID: 18778734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of glutathione on redox regulation by antioxidant proteins and apoptosis in macrophages exposed to 2-hydroxyethyl methacrylate (HEMA).
    Krifka S; Hiller KA; Spagnuolo G; Jewett A; Schmalz G; Schweikl H
    Biomaterials; 2012 Jul; 33(21):5177-86. PubMed ID: 22534037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antioxidants J811 and 17beta-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death.
    Daré E; Götz ME; Zhivotovsky B; Manzo L; Ceccatelli S
    J Neurosci Res; 2000 Nov; 62(4):557-65. PubMed ID: 11070499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of methylmercury on primary brain cells in mono- and co-culture.
    Morken TS; Sonnewald U; Aschner M; Syversen T
    Toxicol Sci; 2005 Sep; 87(1):169-75. PubMed ID: 15958655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures.
    Lockhart BP; Benicourt C; Junien JL; Privat A
    J Neurosci Res; 1994 Nov; 39(4):494-505. PubMed ID: 7533847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-(13)C]glutamate.
    Allen JW; El-Oqayli H; Aschner M; Syversen T; Sonnewald U
    Brain Res; 2001 Jul; 908(2):149-54. PubMed ID: 11454325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells.
    Tan JK; Then SM; Mazlan M; Jamal R; Ngah WZ
    Nutr Cancer; 2016; 68(3):507-17. PubMed ID: 27008382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macrophage glutathione content and glutathione peroxidase activity are inversely related to cell-mediated oxidation of LDL: in vitro and in vivo studies.
    Rosenblat M; Aviram M
    Free Radic Biol Med; 1998 Jan; 24(2):305-17. PubMed ID: 9433906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 55.