These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Kumar S; Venkata Dasu V; Pakshirajan K Bioresour Technol; 2011 Jan; 102(2):2077-82. PubMed ID: 20832300 [TBL] [Abstract][Full Text] [Related]
6. Biochemical characterization and immobilization of Erwinia carotovoral-asparaginase in a microplate for high-throughput biosensing of l-asparagine. Labrou NE; Muharram MM Enzyme Microb Technol; 2016 Oct; 92():86-93. PubMed ID: 27542748 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional role of Gly281 in L-asparaginase from Erwinia carotovora. Kotzia GA; Labrou NE Protein Pept Lett; 2013 Dec; 20(12):1302-7. PubMed ID: 24261975 [TBL] [Abstract][Full Text] [Related]
8. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Derst C; Henseling J; Röhm KH Protein Sci; 2000 Oct; 9(10):2009-17. PubMed ID: 11106175 [TBL] [Abstract][Full Text] [Related]
9. Structure of Helicobacter pylori L-asparaginase at 1.4 A resolution. Dhavala P; Papageorgiou AC Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1253-61. PubMed ID: 19966411 [TBL] [Abstract][Full Text] [Related]
10. Purification of L-asparaginase from a bacteria Erwinia carotovora and effect of a dihydropyrimidine derivative on some of its kinetic parameters. Kamble VP; Rao RS; Borkar PS; Khobragade CN; Dawane BS Indian J Biochem Biophys; 2006 Dec; 43(6):391-4. PubMed ID: 17285805 [TBL] [Abstract][Full Text] [Related]
11. Improvement of the fungal enzyme pyranose 2-oxidase using protein engineering. Heckmann-Pohl DM; Bastian S; Altmeier S; Antes I J Biotechnol; 2006 Jun; 124(1):26-40. PubMed ID: 16569455 [TBL] [Abstract][Full Text] [Related]
12. [Oligomerization of L-asparaginase from Erwinia carotovora]. Mezentsev IuV; Mol'nar AA; Gnedenko OV; Krasotkina IuV; Sokolov NN; Ivanov AS Biomed Khim; 2006; 52(3):258-71. PubMed ID: 16898584 [TBL] [Abstract][Full Text] [Related]
13. Engineering the pH-dependence of kinetic parameters of maize glutathione S-transferase I by site-directed mutagenesis. Labrou NE; Rigden DJ; Clonis YD Biomol Eng; 2004 Apr; 21(2):61-6. PubMed ID: 15113559 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional structures of L-asparaginase from Erwinia carotovora complexed with aspartate and glutamate. Kravchenko OV; Kislitsin YA; Popov AN; Nikonov SV; Kuranova IP Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):248-56. PubMed ID: 18323619 [TBL] [Abstract][Full Text] [Related]
15. Studies on pH and thermal stability of novel purified L-asparaginase from Pectobacterium carotojorum MTCC 1428. Kumar S; Dasu VV; Pakshirajan K Mikrobiologiia; 2011; 80(3):349-55. PubMed ID: 21861371 [TBL] [Abstract][Full Text] [Related]
16. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme. Karsten WE; Liu D; Rao GS; Harris BG; Cook PF Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972 [TBL] [Abstract][Full Text] [Related]
17. [Purification and properties of recombinant Erwinia carotovora L-asparaginase expressed in E.coli cells]. Borisova AA; El'darov MA; Zhgun AA; Aleksandrova SS; Omel'ianiuk NM; Sokov BN; Berezov TT; Sokolov NN Biomed Khim; 2003; 49(5):502-7. PubMed ID: 16119104 [TBL] [Abstract][Full Text] [Related]
18. [Relationship between the magnitude of Km and pH for L-asparaginase]. Libinson GS; Mikhalev AV Biokhimiia; 1976 Jan; 41(1):149-52. PubMed ID: 6070 [TBL] [Abstract][Full Text] [Related]
19. Molecular cloning of the aspartate 4-decarboxylase gene from Pseudomonas sp. ATCC 19121 and characterization of the bifunctional recombinant enzyme. Wang NC; Lee CY Appl Microbiol Biotechnol; 2006 Nov; 73(2):339-48. PubMed ID: 16847601 [TBL] [Abstract][Full Text] [Related]
20. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]