These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 15951389)
1. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics. Cheng MH; Cascio M; Coalson RD Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389 [TBL] [Abstract][Full Text] [Related]
2. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics. Corry B Biophys J; 2006 Feb; 90(3):799-810. PubMed ID: 16284265 [TBL] [Abstract][Full Text] [Related]
3. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Zhorov BS; Bregestovski PD Biophys J; 2000 Apr; 78(4):1786-803. PubMed ID: 10733960 [TBL] [Abstract][Full Text] [Related]
4. NMR structures of the second transmembrane domain of the human glycine receptor alpha(1) subunit: model of pore architecture and channel gating. Tang P; Mandal PK; Xu Y Biophys J; 2002 Jul; 83(1):252-62. PubMed ID: 12080117 [TBL] [Abstract][Full Text] [Related]
5. Homology model of the GABAA receptor examined using Brownian dynamics. O'Mara M; Cromer B; Parker M; Chung SH Biophys J; 2005 May; 88(5):3286-99. PubMed ID: 15749776 [TBL] [Abstract][Full Text] [Related]
6. Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels. Bednarczyk P; Szewczyk A; Dołowy K Acta Biochim Pol; 2002; 49(4):869-75. PubMed ID: 12545193 [TBL] [Abstract][Full Text] [Related]
7. Homology modeling and molecular dynamics simulations of the alpha1 glycine receptor reveals different states of the channel. Cheng MH; Cascio M; Coalson RD Proteins; 2007 Aug; 68(2):581-93. PubMed ID: 17469203 [TBL] [Abstract][Full Text] [Related]
8. Electrostatics and the ion selectivity of ligand-gated channels. Adcock C; Smith GR; Sansom MS Biophys J; 1998 Sep; 75(3):1211-22. PubMed ID: 9726923 [TBL] [Abstract][Full Text] [Related]
9. Cation-selective mutations in the M2 domain of the inhibitory glycine receptor channel reveal determinants of ion-charge selectivity. Keramidas A; Moorhouse AJ; Pierce KD; Schofield PR; Barry PH J Gen Physiol; 2002 May; 119(5):393-410. PubMed ID: 11981020 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics studies of the archaeal translocon. Gumbart J; Schulten K Biophys J; 2006 Apr; 90(7):2356-67. PubMed ID: 16415058 [TBL] [Abstract][Full Text] [Related]
11. Cation permeability and cation-anion interactions in a mutant GABA-gated chloride channel from Drosophila. Wang CT; Zhang HG; Rocheleau TA; ffrench-Constant RH; Jackson MB Biophys J; 1999 Aug; 77(2):691-700. PubMed ID: 10423418 [TBL] [Abstract][Full Text] [Related]
12. Barriers to ion translocation in cationic and anionic receptors from the Cys-loop family. Ivanov I; Cheng X; Sine SM; McCammon JA J Am Chem Soc; 2007 Jul; 129(26):8217-24. PubMed ID: 17552523 [TBL] [Abstract][Full Text] [Related]
13. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure. Reddy GL; Iwamoto T; Tomich JM; Montal M J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901 [TBL] [Abstract][Full Text] [Related]
14. A model of the glycine receptor deduced from Brownian dynamics studies. O'Mara M; Barry PH; Chung SH Proc Natl Acad Sci U S A; 2003 Apr; 100(7):4310-5. PubMed ID: 12649321 [TBL] [Abstract][Full Text] [Related]
15. Open-channel structures of the human glycine receptor α1 full-length transmembrane domain. Mowrey DD; Cui T; Jia Y; Ma D; Makhov AM; Zhang P; Tang P; Xu Y Structure; 2013 Oct; 21(10):1897-904. PubMed ID: 23994010 [TBL] [Abstract][Full Text] [Related]
16. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site. Gready JE; Ranganathan S; Schofield PR; Matsuo Y; Nishikawa K Protein Sci; 1997 May; 6(5):983-98. PubMed ID: 9144769 [TBL] [Abstract][Full Text] [Related]
17. Side chain flexibility and the pore dimensions in the GABAA receptor. Rossokhin AV; Zhorov BS J Comput Aided Mol Des; 2016 Jul; 30(7):559-67. PubMed ID: 27460059 [TBL] [Abstract][Full Text] [Related]
18. Brownian dynamic model of the glycine receptor chloride channel: effect of the position of charged amino acids on ion membrane currents. Boronovsky SE; Seraya IP; Nartsissov YR Syst Biol (Stevenage); 2006 Sep; 153(5):394-7. PubMed ID: 16986325 [TBL] [Abstract][Full Text] [Related]
19. Correlating structural and energetic changes in glycine receptor activation. Scott S; Lynch JW; Keramidas A J Biol Chem; 2015 Feb; 290(9):5621-34. PubMed ID: 25572390 [TBL] [Abstract][Full Text] [Related]
20. Glycine receptors: lessons on topology and structural effects of the lipid bilayer. Cascio M Biopolymers; 2002; 66(5):359-68. PubMed ID: 12539264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]