These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 15951391)

  • 1. The two-pathway model for the catch-slip transition in biological adhesion.
    Pereverzev YV; Prezhdo OV; Forero M; Sokurenko EV; Thomas WE
    Biophys J; 2005 Sep; 89(3):1446-54. PubMed ID: 15951391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal laws in the force-induced unraveling of biological bonds.
    Pereverzev YV; Prezhdo OV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011905. PubMed ID: 17358182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.
    Pereverzev YV; Prezhdo OV; Thomas WE; Sokurenko EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):010903. PubMed ID: 16089930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic disorder in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC; Iwamoto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010901. PubMed ID: 16486112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entropic-elasticity-controlled dissociation and energetic-elasticity-controlled rupture induce catch-to-slip bonds in cell-adhesion molecules.
    Wei Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031910. PubMed ID: 18517425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force modulating dynamic disorder: a physical model of catch-slip bond transitions in receptor-ligand forced dissociation experiments.
    Liu F; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051904. PubMed ID: 17279936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catch bonds: physical models and biological functions.
    Zhu C; McEver RP
    Mol Cell Biomech; 2005 Sep; 2(3):91-104. PubMed ID: 16708472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of catch bonds involving cell-adhesion molecules.
    Marshall BT; Long M; Piper JW; Yago T; McEver RP; Zhu C
    Nature; 2003 May; 423(6936):190-3. PubMed ID: 12736689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond.
    Evans E; Leung A; Heinrich V; Zhu C
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11281-6. PubMed ID: 15277675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil-bead collision assay: pharmacologically induced changes in membrane mechanics regulate the PSGL-1/P-selectin adhesion lifetime.
    Edmondson KE; Denney WS; Diamond SL
    Biophys J; 2005 Nov; 89(5):3603-14. PubMed ID: 16100264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysics of catch bonds.
    Thomas WE; Vogel V; Sokurenko E
    Annu Rev Biophys; 2008; 37():399-416. PubMed ID: 18573088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic competition between catch and slip bonds in selectins bound to ligands.
    Barsegov V; Thirumalai D
    J Phys Chem B; 2006 Dec; 110(51):26403-12. PubMed ID: 17181300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force-controlled equilibria of specific vesicle-substrate adhesion.
    Smith AS; Lorz BG; Goennenwein S; Sackmann E
    Biophys J; 2006 Apr; 90(7):L52-4. PubMed ID: 16473907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of L-selectin, but not P-selectin, bond formation frequency by convective flow.
    Paschall CD; Guilford WH; Lawrence MB
    Biophys J; 2008 Feb; 94(3):1034-45. PubMed ID: 17890384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. For catch bonds, it all hinges on the interdomain region.
    Thomas W
    J Cell Biol; 2006 Sep; 174(7):911-3. PubMed ID: 17000873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catch bonds: physical models, structural bases, biological function and rheological relevance.
    Zhu C; Lou J; McEver RP
    Biorheology; 2005; 42(6):443-62. PubMed ID: 16369083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling.
    Jadhav S; Eggleton CD; Konstantopoulos K
    Biophys J; 2005 Jan; 88(1):96-104. PubMed ID: 15489302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of catch bonds by rate of force application.
    Sarangapani KK; Qian J; Chen W; Zarnitsyna VI; Mehta P; Yago T; McEver RP; Zhu C
    J Biol Chem; 2011 Sep; 286(37):32749-61. PubMed ID: 21775439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.
    Beste MT; Hammer DA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20716-21. PubMed ID: 19095798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.