These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15952049)

  • 1. Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat.
    Relkin EM; Sterns A; Azeredo W; Prieve BA; Woods CI
    J Assoc Res Otolaryngol; 2005 Jun; 6(2):119-35. PubMed ID: 15952049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears.
    Sun XM
    Hear Res; 2008 Mar; 237(1-2):66-75. PubMed ID: 18258398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating the contributions of olivocochlear and middle ear muscle reflexes in modulation of distortion product otoacoustic emission levels.
    Wolter NE; Harrison RV; James AL
    Audiol Neurootol; 2014; 19(1):41-8. PubMed ID: 24335024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions.
    Goodman SS; Keefe DH
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):125-39. PubMed ID: 16568366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression.
    Sun XM
    J Acoust Soc Am; 2008 Jun; 123(6):4310-20. PubMed ID: 18537382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex.
    Abdala C; Mishra SK; Williams TL
    J Acoust Soc Am; 2009 Mar; 125(3):1584-94. PubMed ID: 19275316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans.
    Müller J; Janssen T; Heppelmann G; Wagner W
    J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits.
    Luebke AE; Stagner BB; Martin GK; Lonsbury-Martin BL
    J Acoust Soc Am; 2014 Apr; 135(4):1941-9. PubMed ID: 25234992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the Origin of Effects of Contralateral Noise on Transient Evoked Otoacoustic Emissions in Unanesthetized Mice.
    Xu Y; Cheatham MA; Siegel JH
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):543-553. PubMed ID: 28303411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of anesthesia on efferent-mediated adaptation of the DPOAE.
    Boyev KP; Liberman MC; Brown MC
    J Assoc Res Otolaryngol; 2002 Sep; 3(3):362-73. PubMed ID: 12382109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of anesthesia on DPOAE level and phase in rats.
    Smith JL; Sterns AR; Prieve BA; Woods CI
    Hear Res; 2008 Jan; 235(1-2):47-59. PubMed ID: 18023304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength.
    Peng JH; Tao ZZ; Huang ZW
    Neuroreport; 2007 Jul; 18(11):1167-70. PubMed ID: 17589320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distortion product otoacoustic emission contralateral suppression functions obtained with ramped stimuli.
    Purcell DW; Butler BE; Saunders TJ; Allen P
    J Acoust Soc Am; 2008 Oct; 124(4):2133-48. PubMed ID: 19062854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips.
    Wagner W; Heppelmann G; Müller J; Janssen T; Zenner HP
    Hear Res; 2007 Jan; 223(1-2):83-92. PubMed ID: 17137736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of negative middle ear pressure on distortion product otoacoustic emissions and application of a compensation procedure in humans.
    Sun XM; Shaver MD
    Ear Hear; 2009 Apr; 30(2):191-202. PubMed ID: 19194291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs.
    Guinan JJ; Backus BC; Lilaonitkul W; Aharonson V
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):521-40. PubMed ID: 12799992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms.
    Wagner W; Heyd A
    Otol Neurotol; 2011 Oct; 32(8):1379-88. PubMed ID: 21921859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sound-conditioning on noise-induced susceptibility of distortion-product otoacoustic emissions.
    Luebke AE; Stagner BB; Martin GK; Lonsbury-Martin BL
    J Acoust Soc Am; 2015 Jul; 138(1):58-64. PubMed ID: 26233006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Type 2 Diabetes on Otoacoustic Emissions and the Medial Olivocochlear Reflex.
    Eren E; Harman E; Arslanoğlu S; Önal K
    Otolaryngol Head Neck Surg; 2014 Jun; 150(6):1033-9. PubMed ID: 24671462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.