These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15952237)

  • 1. A theoretical study of pentacyclo-undecane cage peptides of the type [Ac-X-Y-NHMe].
    Bisetty K; Corcho FJ; Canto J; Kruger HG; Perez JJ
    J Pept Sci; 2006 Feb; 12(2):92-105. PubMed ID: 15952237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational study of peptides containing dehydrophenylalanine: helical structures without hydrogen bond.
    Nandel FS; Kaur H; Malik N; Shankar N; Jain DV
    Indian J Biochem Biophys; 2001 Dec; 38(6):417-25. PubMed ID: 11989673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational investigation of alpha,beta-dehydropeptides. XVI. Beta-turn tendency in Ac-Pro-DeltaXaa-NHMe: crystallographic and theoretical studies.
    Broda MA; Ciszak EM; Koziol AE; Pietrzynski G; Rzeszotarska B
    J Pept Sci; 2006 Aug; 12(8):538-49. PubMed ID: 16733828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational preferences of proline analogues with different ring size.
    Jhon JS; Kang YK
    J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational analysis of the biologically active cyclic analog of beta-casomorphin H-Tyr-cyclo[D-OrnPheProGly].
    Kostetsky PV; Arkhipova SF
    Biochemistry (Mosc); 1999 Sep; 64(9):1005-11. PubMed ID: 10521717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation of the conformational profile of the four stereomers of Ac-L-Pro-c3Phe-NHMe (c3Phe= 2,3-methanophenylalanine).
    Rodriguez A; Canto J; Corcho FJ; Perez JJ
    Biopolymers; 2009; 92(6):518-24. PubMed ID: 19728301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-conformation ultraviolet and infrared spectroscopy of model synthetic foldamers: beta-peptides Ac-beta3-hPhe-beta3-hAla-NHMe and Ac-beta3-hAla-beta3-hPhe-NHMe.
    Baquero EE; James WH; Choi SH; Gellman SH; Zwier TS
    J Am Chem Soc; 2008 Apr; 130(14):4795-807. PubMed ID: 18345673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational studies of cyclic enkephalin analogues with L- or D-proline in position 3.
    Malicka J; Groth M; Czaplewski C; Wiczk W; Liwo A
    Biopolymers; 2002 Apr; 63(4):217-31. PubMed ID: 11807749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral and achiral fundamental conformational building units of beta-peptides: a matrix isolation conformational study on Ac-beta-HGly-NHMe and Ac-beta-HAla-NHMe.
    Beke T; Somlai C; Magyarfalvi G; Perczel A; Tarczay G
    J Phys Chem B; 2009 Jun; 113(22):7918-26. PubMed ID: 19432461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of azaproline on Peptide conformation.
    Che Y; Marshall GR
    J Org Chem; 2004 Dec; 69(26):9030-42. PubMed ID: 15609935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse turns in blocked dipeptides are intrinsically unstable in water.
    Tobias DJ; Sneddon SF; Brooks CL
    J Mol Biol; 1990 Dec; 216(3):783-96. PubMed ID: 2258940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational circular dichroism and IR spectral analysis as a test of theoretical conformational modeling for a cyclic hexapeptide.
    Bour P; Kim J; Kapitan J; Hammer RP; Huang R; Wu L; Keiderling TA
    Chirality; 2008 Nov; 20(10):1104-19. PubMed ID: 18506832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designed peptides with homochiral and heterochiral diproline templates as conformational constraints.
    Chatterjee B; Saha I; Raghothama S; Aravinda S; Rai R; Shamala N; Balaram P
    Chemistry; 2008; 14(20):6192-204. PubMed ID: 18491347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-conformation and diastereomer specific ultraviolet and infrared spectroscopy of model synthetic foldamers: alpha/beta-peptides.
    James WH; Baquero EE; Shubert VA; Choi SH; Gellman SH; Zwier TS
    J Am Chem Soc; 2009 May; 131(18):6574-90. PubMed ID: 19366210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of the conformational preferences of the (R)-8-amino-pentacyclo[5.4.0.0(2,6).0(3,10).0(5,9)]undecane-8-carboxylic acid monopeptide.
    Bisetty K; Gomez-Catalan J; Aleman C; Giralt E; Kruger HG; Perez JJ
    J Pept Sci; 2004 May; 10(5):274-84. PubMed ID: 15160839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Lysine residue as an amino acid substitute for conformational constraint of Xaa-Asp fragment of biologically active peptides using side chain lactamization].
    Kostetskiĭ PV; Artem'ev IV
    Bioorg Khim; 1997 Mar; 23(3):168-73. PubMed ID: 9190787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational interconversion in compstatin probed with molecular dynamics simulations.
    Mallik B; Lambris JD; Morikis D
    Proteins; 2003 Oct; 53(1):130-41. PubMed ID: 12945056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible scaling of dihedral angle barriers during molecular dynamics to improve structure prediction of cyclic peptides.
    Riemann RN; Zacharias M
    J Pept Res; 2004 Apr; 63(4):354-64. PubMed ID: 15102053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational preferences of N-methoxycarbonyl proline dipeptide.
    Kang YK; Kang NS
    J Comput Chem; 2009 May; 30(7):1116-27. PubMed ID: 18988252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. β-turn tendency in N-methylated peptides with dehydrophenylalanine residue: DFT study.
    Buczek A; Wałęsa R; Broda MA
    Biopolymers; 2012 Jul; 97(7):518-28. PubMed ID: 22328238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.