BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 15952775)

  • 1. HAD superfamily phosphotransferase substrate diversification: structure and function analysis of HAD subclass IIB sugar phosphatase BT4131.
    Lu Z; Dunaway-Mariano D; Allen KN
    Biochemistry; 2005 Jun; 44(24):8684-96. PubMed ID: 15952775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The X-ray crystallographic structure and specificity profile of HAD superfamily phosphohydrolase BT1666: comparison of paralogous functions in B. thetaiotaomicron.
    Lu Z; Dunaway-Mariano D; Allen KN
    Proteins; 2011 Nov; 79(11):3099-107. PubMed ID: 21989931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function analysis of 2-keto-3-deoxy-D-glycero-D-galactonononate-9-phosphate phosphatase defines specificity elements in type C0 haloalkanoate dehalogenase family members.
    Lu Z; Wang L; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2009 Jan; 284(2):1224-33. PubMed ID: 18986982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray crystal structure of the hypothetical phosphotyrosine phosphatase MDP-1 of the haloacid dehalogenase superfamily.
    Peisach E; Selengut JD; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Oct; 43(40):12770-9. PubMed ID: 15461449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .
    Nguyen HH; Wang L; Huang H; Peisach E; Dunaway-Mariano D; Allen KN
    Biochemistry; 2010 Feb; 49(6):1082-92. PubMed ID: 20050614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and activity analyses of Escherichia coli K-12 NagD provide insight into the evolution of biochemical function in the haloalkanoic acid dehalogenase superfamily.
    Tremblay LW; Dunaway-Mariano D; Allen KN
    Biochemistry; 2006 Jan; 45(4):1183-93. PubMed ID: 16430214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of structure and function in the haloacid dehalogenase enzyme superfamily: Bacteroides thetaiotaomicron BT2127 is an inorganic pyrophosphatase.
    Huang H; Patskovsky Y; Toro R; Farelli JD; Pandya C; Almo SC; Allen KN; Dunaway-Mariano D
    Biochemistry; 2011 Oct; 50(41):8937-49. PubMed ID: 21894910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The catalytic scaffold of the haloalkanoic acid dehalogenase enzyme superfamily acts as a mold for the trigonal bipyramidal transition state.
    Lu Z; Dunaway-Mariano D; Allen KN
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5687-92. PubMed ID: 18398008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis.
    Daughtry KD; Huang H; Malashkevich V; Patskovsky Y; Liu W; Ramagopal U; Sauder JM; Burley SK; Almo SC; Dunaway-Mariano D; Allen KN
    Biochemistry; 2013 Aug; 52(32):5372-86. PubMed ID: 23848398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mutational analysis of the PhoN protein of Salmonella typhimurium provide insight into mechanistic details.
    Makde RD; Mahajan SK; Kumar V
    Biochemistry; 2007 Feb; 46(8):2079-90. PubMed ID: 17263560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and mechanism of action of a cofactor-dependent phosphoglycerate mutase homolog from Bacillus stearothermophilus with broad specificity phosphatase activity.
    Rigden DJ; Mello LV; Setlow P; Jedrzejas MJ
    J Mol Biol; 2002 Feb; 315(5):1129-43. PubMed ID: 11827481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of active sorbitol-6-phosphate phosphatase in the haloacid dehalogenase-like hydrolase superfamily.
    Chin T; Ikeuchi M
    J Gen Appl Microbiol; 2018 Nov; 64(5):248-252. PubMed ID: 29743459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and regulation of a bacterial sugar phosphatase of the haloalkanoate dehalogenase superfamily, AraL, from Bacillus subtilis.
    Godinho LM; de Sá-Nogueira I
    FEBS J; 2011 Jul; 278(14):2511-24. PubMed ID: 21575135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for substrate binding to human pyridoxal 5'-phosphate phosphatase/chronophin by a conformational change.
    Cho HJ; Lee HJ; Cho HY; Park JW; Lee DS; Lee HS; Kwon OS; Kang BS
    Int J Biol Macromol; 2019 Jun; 131():912-924. PubMed ID: 30914363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of an archaeal homolog of survival protein E (SurEalpha): an acid phosphatase with purine nucleotide specificity.
    Mura C; Katz JE; Clarke SG; Eisenberg D
    J Mol Biol; 2003 Mar; 326(5):1559-75. PubMed ID: 12595266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1.
    Hesseler M; Bogdanović X; Hidalgo A; Berenguer J; Palm GJ; Hinrichs W; Bornscheuer UT
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):1049-60. PubMed ID: 21603934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The tail of KdsC: conformational changes control the activity of a haloacid dehalogenase superfamily phosphatase.
    Biswas T; Yi L; Aggarwal P; Wu J; Rubin JR; Stuckey JA; Woodard RW; Tsodikov OV
    J Biol Chem; 2009 Oct; 284(44):30594-603. PubMed ID: 19726684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis.
    Cronin A; Homburg S; Dürk H; Richter I; Adamska M; Frère F; Arand M
    J Mol Biol; 2008 Nov; 383(3):627-40. PubMed ID: 18775727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases.
    Lee YH; Ogata C; Pflugrath JW; Levitt DG; Sarma R; Banaszak LJ; Pilkis SJ
    Biochemistry; 1996 May; 35(19):6010-9. PubMed ID: 8634242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.