BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15953436)

  • 1. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography.
    Shahidi M; Wang Z; Zelkha R
    Am J Ophthalmol; 2005 Jun; 139(6):1056-61. PubMed ID: 15953436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images.
    Christensen UC; Kroyer K; Thomadsen J; Jorgensen TM; la Cour M; Sander B
    Br J Ophthalmol; 2008 Jun; 92(6):800-5. PubMed ID: 18523085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment artifacts in optical coherence tomography analyzed images.
    Leung CK; Chan WM; Chong KK; Chan KC; Yung WH; Tsang MK; Tse RK; Lam DS
    Ophthalmology; 2007 Feb; 114(2):263-70. PubMed ID: 17123619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases.
    Sakamoto A; Hangai M; Yoshimura N
    Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography.
    Ruggeri M; Wehbe H; Jiao S; Gregori G; Jockovich ME; Hackam A; Duan Y; Puliafito CA
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1808-14. PubMed ID: 17389515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective comparison of cirrus and stratus optical coherence tomography for quantifying retinal thickness.
    Kiernan DF; Hariprasad SM; Chin EK; Kiernan CL; Rago J; Mieler WF
    Am J Ophthalmol; 2009 Feb; 147(2):267-275.e2. PubMed ID: 18929353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility of retinal thickness measurements in healthy subjects using spectralis optical coherence tomography.
    Menke MN; Dabov S; Knecht P; Sturm V
    Am J Ophthalmol; 2009 Mar; 147(3):467-72. PubMed ID: 19026403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography.
    Grover S; Murthy RK; Brar VS; Chalam KV
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2644-7. PubMed ID: 20007831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of image artifact produced by optical coherence tomography of retinal pathology.
    Ray R; Stinnett SS; Jaffe GJ
    Am J Ophthalmol; 2005 Jan; 139(1):18-29. PubMed ID: 15652824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading.
    Sadda SR; Joeres S; Wu Z; Updike P; Romano P; Collins AT; Walsh AC
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):839-48. PubMed ID: 17251486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral-domain optical coherence tomography imaging of the detached macula in rhegmatogenous retinal detachment.
    Nakanishi H; Hangai M; Unoki N; Sakamoto A; Tsujikawa A; Kita M; Yoshimura N
    Retina; 2009 Feb; 29(2):232-42. PubMed ID: 18997641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema.
    Yeung L; Lima VC; Garcia P; Landa G; Rosen RB
    Ophthalmology; 2009 Jun; 116(6):1158-67. PubMed ID: 19395034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of retinal thickness measurements between three-dimensional and radial scans on spectral-domain optical coherence tomography.
    Sayanagi K; Sharma S; Kaiser PK
    Am J Ophthalmol; 2009 Sep; 148(3):431-8. PubMed ID: 19493524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography.
    Ojima Y; Hangai M; Sasahara M; Gotoh N; Inoue R; Yasuno Y; Makita S; Yatagai T; Tsujikawa A; Yoshimura N
    Ophthalmology; 2007 Dec; 114(12):2197-207. PubMed ID: 17507096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes.
    Margolis R; Spaide RF
    Am J Ophthalmol; 2009 May; 147(5):811-5. PubMed ID: 19232559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Errors in retinal thickness measurements obtained by optical coherence tomography.
    Sadda SR; Wu Z; Walsh AC; Richine L; Dougall J; Cortez R; LaBree LD
    Ophthalmology; 2006 Feb; 113(2):285-93. PubMed ID: 16406542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations.
    Ito Y; Nakamura M; Yamakoshi T; Lin J; Yatsuya H; Terasaki H
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4079-86. PubMed ID: 17724190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal thickness measurements from optical coherence tomography using a Markov boundary model.
    Koozekanani D; Boyer K; Roberts C
    IEEE Trans Med Imaging; 2001 Sep; 20(9):900-16. PubMed ID: 11585207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia.
    Lim MC; Hoh ST; Foster PJ; Lim TH; Chew SJ; Seah SK; Aung T
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):974-8. PubMed ID: 15728555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of optical coherence tomography retinal thickness parameters for use in clinical trials for neovascular age-related macular degeneration.
    Keane PA; Liakopoulos S; Jivrajka RV; Chang KT; Alasil T; Walsh AC; Sadda SR
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3378-85. PubMed ID: 19264895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.