BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1595349)

  • 1. Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies.
    Söderlund K; Greenhaff PL; Hultman E
    Acta Physiol Scand; 1992 Jan; 144(1):15-22. PubMed ID: 1595349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation.
    Greenhaff PL; Söderlund K; Ren JM; Hultman E
    J Physiol; 1993 Jan; 460():443-53. PubMed ID: 8487203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP content in single fibres from human skeletal muscle after electrical stimulation and during recovery.
    Söderlund K; Hultman E
    Acta Physiol Scand; 1990 Jul; 139(3):459-66. PubMed ID: 2239349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans.
    Hultman E; Spriet LL
    J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism in single human muscle fibers during contraction without and with epinephrine infusion.
    Greenhaff PL; Ren JM; Söderlund K; Hultman E
    Am J Physiol; 1991 May; 260(5 Pt 1):E713-8. PubMed ID: 2035627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man.
    Ren JM; Broberg S; Sahlin K; Hultman E
    Acta Physiol Scand; 1990 Jul; 139(3):467-74. PubMed ID: 2239350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting.
    Greenhaff PL; Nevill ME; Soderlund K; Bodin K; Boobis LH; Williams C; Hultman E
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):149-55. PubMed ID: 7965830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation.
    Hultman E; Sjöholm H
    J Physiol; 1983 Dec; 345():525-32. PubMed ID: 6663511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle.
    Bergström M; Hultman E
    J Appl Physiol (1985); 1988 Oct; 65(4):1500-5. PubMed ID: 3182513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation.
    Spriet LL; Ren JM; Hultman E
    J Appl Physiol (1985); 1988 Apr; 64(4):1439-44. PubMed ID: 3378979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP utilization and force during intermittent and continuous muscle contractions.
    Chasiotis D; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Jul; 63(1):167-74. PubMed ID: 3624122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP and phosphocreatine changes in single human muscle fibers after intense electrical stimulation.
    Söderlund K; Hultman E
    Am J Physiol; 1991 Dec; 261(6 Pt 1):E737-41. PubMed ID: 1767834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle glucolysis, glycogenolysis and glycogen phosphorylase during electrical stimulation in man.
    Ren JM; Chasiotis D; Bergström M; Hultman E
    Acta Physiol Scand; 1988 May; 133(1):101-7. PubMed ID: 3227898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic changes with fatigue in different types of single muscle fibres of Xenopus laevis.
    Nagesser AS; van der Laarse WJ; Elzinga G
    J Physiol; 1992 Mar; 448():511-23. PubMed ID: 1593475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caffeine administration results in greater tension development in previously fatigued canine muscle in situ.
    Howlett RA; Kelley KM; Grassi B; Gladden LB; Hogan MC
    Exp Physiol; 2005 Nov; 90(6):873-9. PubMed ID: 16118234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic energy release in skeletal muscle during electrical stimulation in men.
    Spriet LL; Söderlund K; Bergström M; Hultman E
    J Appl Physiol (1985); 1987 Feb; 62(2):611-5. PubMed ID: 3558220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy cost and metabolic regulation during intermittent and continuous tetanic contractions in human skeletal muscle.
    Spriet LL; Soderlund K; Hultman E
    Can J Physiol Pharmacol; 1988 Feb; 66(2):134-9. PubMed ID: 3370544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions.
    Spriet LL
    Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glycogenolysis in human skeletal muscle.
    Ren JM; Hultman E
    J Appl Physiol (1985); 1989 Dec; 67(6):2243-8. PubMed ID: 2606829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.