BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1595349)

  • 21. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycogen and lactate metabolism during low-intensity exercise in man.
    Nordheim K; Vøllestad NK
    Acta Physiol Scand; 1990 Jul; 139(3):475-84. PubMed ID: 2239351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High physiological levels of epinephrine do not enhance muscle glycogenolysis during tetanic stimulation.
    Chesley A; Dyck DJ; Spriet LL
    J Appl Physiol (1985); 1994 Aug; 77(2):956-62. PubMed ID: 8002553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.
    Henriksson J; Salmons S; Lowry OH
    Biomed Biochim Acta; 1989; 48(5-6):S445-54. PubMed ID: 2527028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.
    Gray SR; Söderlund K; Ferguson RA
    J Sports Sci; 2008 May; 26(7):701-7. PubMed ID: 18409101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contraction-mediated glycogenolysis in mouse skeletal muscle lacking creatine kinase: the role of phosphorylase b activation.
    Katz A; Andersson DC; Yu J; Norman B; Sandstrom ME; Wieringa B; Westerblad H
    J Physiol; 2003 Dec; 553(Pt 2):523-31. PubMed ID: 12963789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation.
    Cadefau JA; Parra J; Cussó R; Heine G; Pette D
    Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic energy provision in aged skeletal muscle during tetanic stimulation.
    Campbell CB; Marsh DR; Spriet LL
    J Appl Physiol (1985); 1991 Apr; 70(4):1787-95. PubMed ID: 1829080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetyl group availability influences phosphocreatine degradation even during intense muscle contraction.
    Timmons JA; Constantin-Teodosiu D; Poucher SM; Greenhaff PL
    J Physiol; 2004 Dec; 561(Pt 3):851-9. PubMed ID: 15498812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue of submaximal static contractions.
    Bigland-Ritchie B; Cafarelli E; Vøllestad NK
    Acta Physiol Scand Suppl; 1986; 556():137-48. PubMed ID: 3471051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-energy phosphate compounds during exercise in human slow-twitch and fast-twitch muscle fibres.
    Rehunen S; Näveri H; Kuoppasalmi K; Härkönen M
    Scand J Clin Lab Invest; 1982 Oct; 42(6):499-506. PubMed ID: 7156863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise.
    Ball-Burnett M; Green HJ; Houston ME
    J Physiol; 1991 Jun; 437():257-67. PubMed ID: 1890634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force, relaxation and energy metabolism of rat soleus muscle during anaerobic contraction.
    Sahlin K; Edström L; Sjöholm H
    Acta Physiol Scand; 1987 Jan; 129(1):1-7. PubMed ID: 3565037
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance and muscle metabolite changes in exercise with repeated maximal dynamic contractions.
    Karlsson J; Piehl K; Knuttgen HG
    Int J Sports Med; 1981 May; 2(2):110-3. PubMed ID: 7333740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of electrical stimulation frequency on skeletal muscle force and fatigue.
    Dreibati B; Lavet C; Pinti A; Poumarat G
    Ann Phys Rehabil Med; 2010 May; 53(4):266-71, 271-7. PubMed ID: 20430713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Age-related changes in force and efficiency in rat skeletal muscle.
    De Haan A; de Ruiter CJ; Lind A; Sargeant AJ
    Acta Physiol Scand; 1993 Apr; 147(4):347-55. PubMed ID: 8493873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor drive and metabolic responses during repeated submaximal contractions in humans.
    Vøllestad NK; Sejersted OM; Bahr R; Woods JJ; Bigland-Ritchie B
    J Appl Physiol (1985); 1988 Apr; 64(4):1421-7. PubMed ID: 3378978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis.
    Nagesser AS; Van der Laarse WJ; Elzinga G
    J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic effects of two frequencies of short-term surface electrical stimulation on human muscle.
    Houston ME; Farrance BW; Wight RI
    Can J Physiol Pharmacol; 1982 May; 60(5):727-31. PubMed ID: 7104859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.