These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
501 related articles for article (PubMed ID: 15953539)
1. Analysis of recombination and gene distribution in the 2L1.0 region of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Dilbirligi M; Erayman M; Gill KS Genomics; 2005 Jul; 86(1):47-54. PubMed ID: 15953539 [TBL] [Abstract][Full Text] [Related]
2. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516 [TBL] [Abstract][Full Text] [Related]
3. Mapping barley Ds insertions using wheat deletion lines reveals high insertion frequencies in gene-rich regions with high to moderate recombination rates. Randhawa HS; Singh J; Lemaux PG; Gill KS Genome; 2009 Jun; 52(6):566-75. PubMed ID: 19483775 [TBL] [Abstract][Full Text] [Related]
4. Comparison of homoeologous group-6 short arm physical maps of wheat and barley reveals a similar distribution of recombinogenic and gene-rich regions. Weng Y; Lazar D Theor Appl Genet; 2002 May; 104(6-7):1078-1085. PubMed ID: 12582615 [TBL] [Abstract][Full Text] [Related]
5. Gene-containing regions of wheat and the other grass genomes. Sandhu D; Gill KS Plant Physiol; 2002 Mar; 128(3):803-11. PubMed ID: 11891237 [TBL] [Abstract][Full Text] [Related]
6. [Features of recombination of nuclear genome in back crossed offspring of barley-wheat hybrids Hordeum vulgare L. (2n=14) x Triticum aestivum L. (2n+42) with the use of SSR-analysis]. Bil'danova LL; Salina EA; Pershina LA Genetika; 2003 Dec; 39(12):1673-9. PubMed ID: 14964835 [TBL] [Abstract][Full Text] [Related]
7. Structural and functional organization of the '1S0.8 gene-rich region' in the Triticeae. Sandhu D; Gill KS Plant Mol Biol; 2002; 48(5-6):791-804. PubMed ID: 11999850 [TBL] [Abstract][Full Text] [Related]
8. [Comparative molecular-genetic mapping of genomes of rye (Secale cereale L.) and other cereals]. Malyshev SV; Korzun VN; Zaben'kova KI; Voĭlokov AV; Berner A; Kartel' NA Tsitol Genet; 2003; 37(5):9-20. PubMed ID: 14650323 [TBL] [Abstract][Full Text] [Related]
9. Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Huang S; Spielmeyer W; Lagudah ES; Munns R J Exp Bot; 2008; 59(4):927-37. PubMed ID: 18325922 [TBL] [Abstract][Full Text] [Related]
10. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. La Rota M; Kantety RV; Yu JK; Sorrells ME BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707 [TBL] [Abstract][Full Text] [Related]
11. [Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley-wheat hybrids Hordeum vulgare L. (2n = 14) x Triticum aestivum L. (2n = 42) and differing in fertility]. Bil'danova LL; Badaeva ED; Pershina LA; Salina EA Genetika; 2004 Dec; 40(12):1668-77. PubMed ID: 15648150 [TBL] [Abstract][Full Text] [Related]
12. [RAPD-based analysis of introgression of barley genetic material into the genome of alloplasmic wheat lines (Hordeum geniculatum All./ Triticum aestivum L.)]. Trubacheeva NV; Salina EA; Numerova OM; Pershina LA Genetika; 2003 Jun; 39(6):791-5. PubMed ID: 12884518 [TBL] [Abstract][Full Text] [Related]
13. Dissection of the barley 2L1.0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Marcel TC; Aghnoum R; Durand J; Varshney RK; Niks RE Mol Plant Microbe Interact; 2007 Dec; 20(12):1604-15. PubMed ID: 17990968 [TBL] [Abstract][Full Text] [Related]
14. [Specific features of fertility restoration in alloplasmic lines obtained based on hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. x Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28]. Pershina LA; Deviatkina EP; Trubacheeva NV; Kravtsova LA; Dobrovol'skaia OB Genetika; 2012 Dec; 48(12):1372-9. PubMed ID: 23516898 [TBL] [Abstract][Full Text] [Related]
15. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. Fleury D; Luo MC; Dvorak J; Ramsay L; Gill BS; Anderson OD; You FM; Shoaei Z; Deal KR; Langridge P BMC Genomics; 2010 Jun; 11():382. PubMed ID: 20553621 [TBL] [Abstract][Full Text] [Related]
16. [Chromosome synteny of the A genome of two evolutionary wheat lines]. Dobrovol'skaia OB; Sourdille P; Bernard M; Salina EA Genetika; 2009 Nov; 45(11):1548-55. PubMed ID: 20058801 [TBL] [Abstract][Full Text] [Related]
17. The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Sutton T; Whitford R; Baumann U; Dong C; Able JA; Langridge P Plant J; 2003 Nov; 36(4):443-56. PubMed ID: 14617076 [TBL] [Abstract][Full Text] [Related]
18. [Construction and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp gussoneanum)-Triticum aestivum]. Trubacheeva NV; Badaeva ED; Adonina IG; Belova LI; Deviatkina EP; Pershina LA Genetika; 2008 Jan; 44(1):81-9. PubMed ID: 18409390 [TBL] [Abstract][Full Text] [Related]
19. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cuadrado A; Cardoso M; Jouve N Cytogenet Genome Res; 2008; 120(3-4):210-9. PubMed ID: 18504349 [TBL] [Abstract][Full Text] [Related]