These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15953809)

  • 1. Role of mitochondrial dysfunction and oxidative stress in the pathogenesis of selective neuronal loss in Wernicke's encephalopathy.
    Desjardins P; Butterworth RF
    Mol Neurobiol; 2005; 31(1-3):17-25. PubMed ID: 15953809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of neuronal cell death in Wernicke's encephalopathy.
    Hazell AS; Todd KG; Butterworth RF
    Metab Brain Dis; 1998 Jun; 13(2):97-122. PubMed ID: 9699919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity and inflammation.
    Hazell AS; Butterworth RF
    Alcohol Alcohol; 2009; 44(2):141-7. PubMed ID: 19151161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal cell death in Wernicke's encephalopathy: pathophysiologic mechanisms and implications for PET imaging.
    Leong DK; Butterworth RF
    Metab Brain Dis; 1996 Mar; 11(1):71-9. PubMed ID: 8815391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: an in vitro model for the study of cell death mechanisms in Wernicke's encephalopathy.
    Pannunzio P; Hazell AS; Pannunzio M; Rao KV; Butterworth RF
    J Neurosci Res; 2000 Oct; 62(2):286-92. PubMed ID: 11020221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of Thiamine Transport at the GUT-BBB-AXIS Contributes to Wernicke's Encephalopathy.
    Abdul-Muneer PM; Alikunju S; Schuetz H; Szlachetka AM; Ma X; Haorah J
    Mol Neurobiol; 2018 Jul; 55(7):5937-5950. PubMed ID: 29128903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocytes are a major target in thiamine deficiency and Wernicke's encephalopathy.
    Hazell AS
    Neurochem Int; 2009; 55(1-3):129-35. PubMed ID: 19428817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histamine-mediated neuronal death in a rat model of Wernicke's encephalopathy.
    Langlais PJ; Zhang SX; Weilersbacher G; Hough LB; Barke KE
    J Neurosci Res; 1994 Aug; 38(5):565-74. PubMed ID: 7529327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thiamine deficiency on brain metabolism: implications for the pathogenesis of the Wernicke-Korsakoff syndrome.
    Butterworth RF
    Alcohol Alcohol; 1989; 24(4):271-9. PubMed ID: 2675860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activities of thiamine-dependent enzymes in two experimental models of thiamine-deficiency encephalopathy. 2. alpha-Ketoglutarate dehydrogenase.
    Butterworth RF; Giguère JF; Besnard AM
    Neurochem Res; 1986 Apr; 11(4):567-77. PubMed ID: 3724963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced activities of thiamine-dependent enzymes in brains of alcoholics in the absence of Wernicke's encephalopathy.
    Lavoie J; Butterworth RF
    Alcohol Clin Exp Res; 1995 Aug; 19(4):1073-7. PubMed ID: 7485819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional alterations of thiamine phosphate esters and of thiamine diphosphate-dependent enzymes in relation to function in experimental Wernicke's encephalopathy.
    Héroux M; Butterworth RF
    Neurochem Res; 1995 Jan; 20(1):87-93. PubMed ID: 7739764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible alterations of cerebral gamma-aminobutyric acid in pyrithiamine-treated rats: implications for the pathogenesis of Wernicke's encephalopathy.
    Héroux M; Butterworth RF
    J Neurochem; 1988 Oct; 51(4):1221-6. PubMed ID: 3418348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathophysiologic mechanisms responsible for the reversible (thiamine-responsive) and irreversible (thiamine non-responsive) neurological symptoms of Wernicke's encephalopathy.
    Butterworth RF
    Drug Alcohol Rev; 1993; 12(3):315-22. PubMed ID: 16840290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiamin deficiency and brain disorders.
    Butterworth RF
    Nutr Res Rev; 2003 Dec; 16(2):277-84. PubMed ID: 19087395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Wernicke's encephalopathy induced by the use of diet pills and unbalanced diet].
    Tóth A; Aradi G; Várallyay G; Arányi Z; Bereczki D; Vastagh I
    Orv Hetil; 2014 Mar; 155(12):469-74. PubMed ID: 24631935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of diencephalic lesions in an experimental model of Wernicke's encephalopathy.
    Langlais PJ
    Metab Brain Dis; 1995 Mar; 10(1):31-44. PubMed ID: 7596327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy.
    Todd KG; Butterworth RF
    Exp Neurol; 1998 Jan; 149(1):130-8. PubMed ID: 9454622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiamine-dependent enzyme changes in the brains of alcoholics: relationship to the Wernicke-Korsakoff syndrome.
    Butterworth RF; Kril JJ; Harper CG
    Alcohol Clin Exp Res; 1993 Oct; 17(5):1084-8. PubMed ID: 8279670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropathological correlates of memory dysfunction in the Wernicke-Korsakoff syndrome.
    Halliday G; Cullen K; Harding A
    Alcohol Alcohol Suppl; 1994; 2():245-51. PubMed ID: 8974343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.