BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15954308)

  • 1. Clover saponins as methane inhibitors and their effect on rumen n utilisation efficiency as studied in vitro and in vivo.
    Fievez V; Dragomir C; Mbanzamihigo L; Demeyer D
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(4):299-304. PubMed ID: 15954308
    [No Abstract]   [Full Text] [Related]  

  • 2. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production.
    Patra AK; Saxena J
    Nutr Res Rev; 2009 Dec; 22(2):204-19. PubMed ID: 20003589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms.
    Guo YQ; Liu JX; Lu Y; Zhu WY; Denman SE; McSweeney CS
    Lett Appl Microbiol; 2008 Nov; 47(5):421-6. PubMed ID: 19146532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials.
    Goel G; Makkar HP; Becker K
    J Appl Microbiol; 2008 Sep; 105(3):770-7. PubMed ID: 18422554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tea saponins affect in vitro fermentation and methanogenesis in faunated and defaunated rumen fluid.
    Hu WL; Wu YM; Liu JX; Guo YQ; Ye JA
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):787-92. PubMed ID: 16052712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial rumen fermentation.
    Russell JB; Hespell RB
    J Dairy Sci; 1981 Jun; 64(6):1153-69. PubMed ID: 7024344
    [No Abstract]   [Full Text] [Related]  

  • 7. Methane mitigation from ruminants using tannins and saponins.
    Goel G; Makkar HP
    Trop Anim Health Prod; 2012 Apr; 44(4):729-39. PubMed ID: 21894531
    [No Abstract]   [Full Text] [Related]  

  • 8. Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis.
    Reynolds CK; Kristensen NB
    J Anim Sci; 2008 Apr; 86(14 Suppl):E293-305. PubMed ID: 17940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats.
    Cantalapiedra-Hijar G; Yáñez-Ruiz DR; Martín-García AI; Molina-Alcaide E
    J Anim Sci; 2009 Feb; 87(2):622-31. PubMed ID: 18952730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.
    Molina-Alcaide E; Pascual MR; Cantalapiedra-Hijar G; Morales-García EY; Martín-García AI
    J Anim Sci; 2009 Apr; 87(4):1321-33. PubMed ID: 19098232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance--a review.
    Wang JK; Ye JA; Liu JX
    Trop Anim Health Prod; 2012 Apr; 44(4):697-706. PubMed ID: 21870063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen.
    Patra AK; Yu Z
    Bioresour Technol; 2013 Nov; 148():352-60. PubMed ID: 24063817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferric citrate, nitrate, saponin and their combinations affect in vitro ruminal fermentation, production of sulphide and methane and abundance of select microbial populations.
    Wu H; Meng Q; Zhou Z; Yu Z
    J Appl Microbiol; 2019 Jul; 127(1):150-158. PubMed ID: 31004543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities to enhance performance and efficiency through nutrient synchrony in concentrate-fed ruminants.
    Cole NA; Todd RW
    J Anim Sci; 2008 Apr; 86(14 Suppl):E318-33. PubMed ID: 17940155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient synchrony: sound in theory, elusive in practice.
    Hall MB; Huntington GB
    J Anim Sci; 2008 Apr; 86(14 Suppl):E287-92. PubMed ID: 17965333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization.
    Merry RJ; Lee MR; Davies DR; Dewhurst RJ; Moorby JM; Scollan ND; Theodorou MK
    J Anim Sci; 2006 Nov; 84(11):3049-60. PubMed ID: 17032799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat.
    Owens D; McGee M; Boland T; O'Kiely P
    J Anim Sci; 2009 Feb; 87(2):658-68. PubMed ID: 18952732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of extruding the cereal and/or the legume protein supplement of a compound feed on in vitro ruminal nutrient digestion and nitrogen metabolism.
    Solanas E; Castrillo C; Calsamiglia S
    J Anim Physiol Anim Nutr (Berl); 2007 Jun; 91(5-6):269-77. PubMed ID: 17516951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic aspects of nonprotein nitrogen utilization in ruminant animals.
    Chalupa W
    Fed Proc; 1972; 31(3):1152-64. PubMed ID: 4555775
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.
    Hart KJ; Martin PG; Foley PA; Kenny DA; Boland TM
    J Anim Sci; 2009 Oct; 87(10):3342-50. PubMed ID: 19542500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.