BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15954602)

  • 1. Beta-galactosidase formation in Aspergillus nidulans.
    Fekete E; Karaffa L; Sándor E; Seiboth B; Szentirmai A; Kubicek CP
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):285-6. PubMed ID: 15954602
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of formation of the intracellular beta-galactosidase activity of Aspergillus nidulans.
    Fekete E; Karaffa L; Sándor E; Seiboth B; Biró S; Szentirmai A; Kubicek CP
    Arch Microbiol; 2002 Dec; 179(1):7-14. PubMed ID: 12471499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta-galactosidase activity and lactose utilization in Aspergillus nidulans.
    Fantes PA; Roberts CF
    J Gen Microbiol; 1973 Aug; 77(2):417-86. PubMed ID: 4584063
    [No Abstract]   [Full Text] [Related]  

  • 4. Carbon catabolite repression in the regulation of beta-galactosidase activity in Aspergillus nidulans.
    Karaffa L; Fekete E; Sándor E; Sepsi A; Seiboth B; Szentirmai A; Kubicek CP
    Acta Microbiol Immunol Hung; 2002; 49(2-3):261-5. PubMed ID: 12109156
    [No Abstract]   [Full Text] [Related]  

  • 5. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of beta-galactosidase from Aspergillus nidulans.
    Díaz M; Pedregosa AM; de Lucas JR; Torralba S; Monistrol IF; Laborda F
    Microbiologia; 1996 Dec; 12(4):585-92. PubMed ID: 9018692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of D-galactose is dispensable for the induction of the beta-galactosidase (bgaD) and lactose permease (lacpA) genes in Aspergillus nidulans.
    Orosz A; Fekete E; Flipphi M; Karaffa L
    FEMS Microbiol Lett; 2014 Oct; 359(1):19-25. PubMed ID: 25145606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a permease gene involved in lactose utilisation in Aspergillus nidulans.
    Fekete E; Karaffa L; Seiboth B; Fekete E; Kubicek CP; Flipphi M
    Fungal Genet Biol; 2012 Jun; 49(6):415-25. PubMed ID: 22445777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Method of determining the activity of beta-galactosidase with lactose as substrate].
    Kulikova AK; Letunova EV
    Prikl Biokhim Mikrobiol; 1984; 20(1):133-8. PubMed ID: 6422455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity, inhibitory studies, and oligosaccharide formation by beta-galactosidase from psychrotrophic Bacillus subtilis KL88.
    Rahim KA; Lee BH
    J Dairy Sci; 1991 Jun; 74(6):1773-8. PubMed ID: 1910056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon source regulation of beta-galactosidase biosynthesis in Penicillium chrysogenum.
    Nagy Z; Keresztessy Z; Szentirmai A; Biró S
    J Basic Microbiol; 2001; 41(6):351-62. PubMed ID: 11802545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic production of galactooligosaccharides by beta-galactosidase from Bifidobacterium longum BCRC 15708.
    Hsu CA; Lee SL; Chou CC
    J Agric Food Chem; 2007 Mar; 55(6):2225-30. PubMed ID: 17316019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of genetically prepared enzyme conjugates in lactose and galactose analyses.
    Carlsson H; Ljungcrantz P; Lindbladh C; Persson M; Bülow L
    Anal Biochem; 1994 May; 218(2):278-83. PubMed ID: 8074281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location and biosynthetic regulation of endo-1,4-beta-glucanase in Aspergillus nidulans.
    Kwon KS; Hah YC; Hong SW
    Microbios; 1988; 54(220-221):149-56. PubMed ID: 3054436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorbitol dehydrogenase activity in some galactose non-utilizing mutants of Aspergillus nidulans.
    Malathi S; Shanmugasundaram ER
    Indian J Exp Biol; 1980 Aug; 18(8):886-7. PubMed ID: 7007224
    [No Abstract]   [Full Text] [Related]  

  • 16. Lactose and D-galactose catabolism in the filamentous fungus Aspergillus nidulans.
    Fekete E; Padra J; Szentirmai A; Karaffa L
    Acta Microbiol Immunol Hung; 2008 Jun; 55(2):119-24. PubMed ID: 18595317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efflux of beta-galactosidase products from Escherichia coli.
    Huber RE; Lytton J; Fung EB
    J Bacteriol; 1980 Feb; 141(2):528-33. PubMed ID: 6767683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Aspergillus β-galactosidases as a robust glycomic and biotechnological tool.
    Dragosits M; Pflügl S; Kurz S; Razzazi-Fazeli E; Wilson IB; Rendic D
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3553-67. PubMed ID: 24037406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium alginate entrapped preparations of Aspergillus oryzae beta galactosidase: its stability and applications in the hydrolysis of lactose.
    Haider T; Husain Q
    Int J Biol Macromol; 2007 Jun; 41(1):72-80. PubMed ID: 17298841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.