These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 15955239)

  • 21. Complete genome sequence and analysis of Wolinella succinogenes.
    Baar C; Eppinger M; Raddatz G; Simon J; Lanz C; Klimmek O; Nandakumar R; Gross R; Rosinus A; Keller H; Jagtap P; Linke B; Meyer F; Lederer H; Schuster SC
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11690-5. PubMed ID: 14500908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla.
    Kantor RS; Wrighton KC; Handley KM; Sharon I; Hug LA; Castelle CJ; Thomas BC; Banfield JF
    mBio; 2013 Oct; 4(5):e00708-13. PubMed ID: 24149512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain.
    Ryjenkov DA; Tarutina M; Moskvin OV; Gomelsky M
    J Bacteriol; 2005 Mar; 187(5):1792-8. PubMed ID: 15716451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal transduction in bacteria.
    Stock JB; Stock AM; Mottonen JM
    Nature; 1990 Mar; 344(6265):395-400. PubMed ID: 2157156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes.
    Dos Santos PC; Fang Z; Mason SW; Setubal JC; Dixon R
    BMC Genomics; 2012 May; 13():162. PubMed ID: 22554235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulus perception in bacterial signal-transducing histidine kinases.
    Mascher T; Helmann JD; Unden G
    Microbiol Mol Biol Rev; 2006 Dec; 70(4):910-38. PubMed ID: 17158704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Occurrence of cyclic di-GMP-modulating output domains in cyanobacteria: an illuminating perspective.
    Agostoni M; Koestler BJ; Waters CM; Williams BL; Montgomery BL
    mBio; 2013 Aug; 4(4):. PubMed ID: 23943760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity in bacterial chemotactic responses and niche adaptation.
    Miller LD; Russell MH; Alexandre G
    Adv Appl Microbiol; 2009; 66():53-75. PubMed ID: 19203648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Genomics of Myxobacterial Chemosensory Systems.
    Sharma G; Khatri I; Subramanian S
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MiST: a microbial signal transduction database.
    Ulrich LE; Zhulin IB
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D386-90. PubMed ID: 17135192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome trees constructed using five different approaches suggest new major bacterial clades.
    Wolf YI; Rogozin IB; Grishin NV; Tatusov RL; Koonin EV
    BMC Evol Biol; 2001 Oct; 1():8. PubMed ID: 11734060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Genomics of Cyclic di-GMP Metabolism and Chemosensory Pathways in Shewanella algae Strains: Novel Bacterial Sensory Domains and Functional Insights into Lifestyle Regulation.
    Martín-Rodríguez AJ; Higdon SM; Thorell K; Tellgren-Roth C; Sjöling Å; Galperin MY; Krell T; Römling U
    mSystems; 2022 Apr; 7(2):e0151821. PubMed ID: 35311563
    [No Abstract]   [Full Text] [Related]  

  • 34. Systematic Analysis of c-di-GMP Signaling Mechanisms and Biological Functions in Dickeya zeae EC1.
    Chen Y; Zhou J; Lv M; Liang Z; Parsek MR; Zhang LH
    mBio; 2020 Dec; 11(6):. PubMed ID: 33262261
    [No Abstract]   [Full Text] [Related]  

  • 35. Two-component systems in microbial communities: approaches and resources for generating and analyzing metagenomic data sets.
    Podar M
    Methods Enzymol; 2007; 422():32-46. PubMed ID: 17628133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The upcycled roles of pseudoenzymes in two-component signal transduction.
    Collins MJ; Childers WS
    Curr Opin Microbiol; 2021 Jun; 61():82-90. PubMed ID: 33872991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome.
    Zhang CC; Gonzalez L; Phalip V
    Nucleic Acids Res; 1998 Aug; 26(16):3619-25. PubMed ID: 9685474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prevailing concepts of c-di-GMP signaling.
    Römling U; Simm R
    Contrib Microbiol; 2009; 16():161-181. PubMed ID: 19494585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of structure and function of response regulator output domains.
    Galperin MY
    Curr Opin Microbiol; 2010 Apr; 13(2):150-9. PubMed ID: 20226724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bacterial Inflammation Sensor Regulates c-di-GMP Signaling, Adhesion, and Biofilm Formation.
    Perkins A; Tudorica DA; Teixeira RD; Schirmer T; Zumwalt L; Ogba OM; Cassidy CK; Stansfeld PJ; Guillemin K
    mBio; 2021 Jun; 12(3):e0017321. PubMed ID: 34154415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.