These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15955490)

  • 1. Cerebellum and M1 interaction during early learning of timed motor sequences.
    Penhune VB; Doyon J
    Neuroimage; 2005 Jul; 26(3):801-12. PubMed ID: 15955490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences.
    Penhune VB; Doyon J
    J Neurosci; 2002 Feb; 22(4):1397-406. PubMed ID: 11850466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.
    Hosp JA; Mann S; Wegenast-Braun BM; Calhoun ME; Luft AR
    Neuroscience; 2013 Oct; 250():557-64. PubMed ID: 23876329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning.
    Shah B; Nguyen TT; Madhavan S
    Brain Stimul; 2013 Nov; 6(6):966-8. PubMed ID: 23711765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.
    Penhune VB; Steele CJ
    Behav Brain Res; 2012 Jan; 226(2):579-91. PubMed ID: 22004979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal-cerebellar networks mediate consolidation in a motor sequence learning task: An fMRI study using dynamic causal modelling.
    Tzvi E; Stoldt A; Witt K; Krämer UM
    Neuroimage; 2015 Nov; 122():52-64. PubMed ID: 26244275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delineating the cortico-striatal-cerebellar network in implicit motor sequence learning.
    Tzvi E; Münte TF; Krämer UM
    Neuroimage; 2014 Jul; 94():222-230. PubMed ID: 24632466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans.
    Li Voti P; Conte A; Rocchi L; Bologna M; Khan N; Leodori G; Berardelli A
    Eur J Neurosci; 2014 Jan; 39(1):124-31. PubMed ID: 24303978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term adaptation to dynamics of reaching movements: a PET study.
    Nezafat R; Shadmehr R; Holcomb HH
    Exp Brain Res; 2001 Sep; 140(1):66-76. PubMed ID: 11500799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning.
    Spampinato D; Celnik P
    Sci Rep; 2017 Jan; 7():40715. PubMed ID: 28091578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent TMS to the primary motor cortex augments slow motor learning.
    Narayana S; Zhang W; Rogers W; Strickland C; Franklin C; Lancaster JL; Fox PT
    Neuroimage; 2014 Jan; 85 Pt 3(0 3):971-84. PubMed ID: 23867557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconstructing skill learning and its physiological mechanisms.
    Spampinato D; Celnik P
    Cortex; 2018 Jul; 104():90-102. PubMed ID: 29775838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography.
    Chollet F; DiPiero V; Wise RJ; Brooks DJ; Dolan RJ; Frackowiak RS
    Ann Neurol; 1991 Jan; 29(1):63-71. PubMed ID: 1996881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET.
    Hiura M; Nariai T; Ishii K; Sakata M; Oda K; Toyohara J; Ishiwata K
    J Cereb Blood Flow Metab; 2014 Mar; 34(3):389-96. PubMed ID: 24301294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization.
    Thaut MH; Stephan KM; Wunderlich G; Schicks W; Tellmann L; Herzog H; McIntosh GC; Seitz RJ; Hömberg V
    Cortex; 2009 Jan; 45(1):44-53. PubMed ID: 19081087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-behavior correlates of optimizing learning through interleaved practice.
    Lin CH; Knowlton BJ; Chiang MC; Iacoboni M; Udompholkul P; Wu AD
    Neuroimage; 2011 Jun; 56(3):1758-72. PubMed ID: 21376126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of cortico-cerebellar functional connectivity after motor learning.
    Mehrkanoon S; Boonstra TW; Breakspear M; Hinder M; Summers JJ
    Neuroimage; 2016 Mar; 128():252-263. PubMed ID: 26767943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.