These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 15955506)
1. Motion or activity: their role in intra- and inter-subject variation in fMRI. Lund TE; Nørgaard MD; Rostrup E; Rowe JB; Paulson OB Neuroimage; 2005 Jul; 26(3):960-4. PubMed ID: 15955506 [TBL] [Abstract][Full Text] [Related]
2. Comparison of fMRI statistical software packages and strategies for analysis of images containing random and stimulus-correlated motion. Morgan VL; Dawant BM; Li Y; Pickens DR Comput Med Imaging Graph; 2007 Sep; 31(6):436-46. PubMed ID: 17574816 [TBL] [Abstract][Full Text] [Related]
3. Functional magnetic resonance imaging reveals age-related alterations to motor networks in weighted elbow flexion-extension movement. Kim JH; Lee YS; Lee JJ; Song HJ; Yoo DS; Lee HJ; Kim HJ; Chang Y Neurol Res; 2010 Nov; 32(9):995-1001. PubMed ID: 20433774 [TBL] [Abstract][Full Text] [Related]
4. Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Maziero D; Velasco TR; Hunt N; Payne E; Lemieux L; Salmon CEG; Carmichael DW Neuroimage; 2016 Sep; 138():13-27. PubMed ID: 27157789 [TBL] [Abstract][Full Text] [Related]
6. Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Johnstone T; Ores Walsh KS; Greischar LL; Alexander AL; Fox AS; Davidson RJ; Oakes TR Hum Brain Mapp; 2006 Oct; 27(10):779-88. PubMed ID: 16456818 [TBL] [Abstract][Full Text] [Related]
7. [Data processing of functional magnetic resonance of brain based on statistical parametric mapping]. Li W; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):477-80. PubMed ID: 17591287 [TBL] [Abstract][Full Text] [Related]
8. Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA. Zhang J; Anderson JR; Liang L; Pulapura SK; Gatewood L; Rottenberg DA; Strother SC Magn Reson Imaging; 2009 Feb; 27(2):264-78. PubMed ID: 18849131 [TBL] [Abstract][Full Text] [Related]
9. Studying overt word reading and speech production with event-related fMRI: a method for detecting, assessing, and correcting articulation-induced signal changes and for measuring onset time and duration of articulation. Huang J; Francis AP; Carr TH Brain Lang; 2008 Jan; 104(1):10-23. PubMed ID: 17328946 [TBL] [Abstract][Full Text] [Related]
10. Improving the reliability of single-subject fMRI by weighting intra-run variability. de Bertoldi F; Finos L; Maieron M; Weis L; Campanella M; Ius T; Fadiga L Neuroimage; 2015 Jul; 114():287-93. PubMed ID: 25862262 [TBL] [Abstract][Full Text] [Related]
11. Modeling brain activation in fMRI using group MRF. Ng B; Hamarneh G; Abugharbieh R IEEE Trans Med Imaging; 2012 May; 31(5):1113-23. PubMed ID: 22287237 [TBL] [Abstract][Full Text] [Related]
13. Support vector machine learning-based fMRI data group analysis. Wang Z; Childress AR; Wang J; Detre JA Neuroimage; 2007 Jul; 36(4):1139-51. PubMed ID: 17524674 [TBL] [Abstract][Full Text] [Related]
14. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Chowdhury ME; Mullinger KJ; Glover P; Bowtell R Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127 [TBL] [Abstract][Full Text] [Related]
20. Disentangling subgroups of participants recruiting shared as well as different brain regions for the execution of the verb generation task: A data-driven fMRI study. Cerliani L; Thomas RM; Aquino D; Contarino V; Bizzi A Cortex; 2017 Jan; 86():247-259. PubMed ID: 28010939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]