These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 15955976)
1. Computer classification of nonproliferative diabetic retinopathy. Lee SC; Lee ET; Wang Y; Klein R; Kingsley RM; Warn A Arch Ophthalmol; 2005 Jun; 123(6):759-64. PubMed ID: 15955976 [TBL] [Abstract][Full Text] [Related]
2. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts. Lee SC; Lee ET; Kingsley RM; Wang Y; Russell D; Klein R; Warn A Arch Ophthalmol; 2001 Apr; 119(4):509-15. PubMed ID: 11296016 [TBL] [Abstract][Full Text] [Related]
3. Computer aided quantification for retinal lesions in patients with moderate and severe non-proliferative diabetic retinopathy: a retrospective cohort study. Wu H; Zhang X; Geng X; Dong J; Zhou G BMC Ophthalmol; 2014 Oct; 14():126. PubMed ID: 25359611 [TBL] [Abstract][Full Text] [Related]
4. Automatic detection of microaneurysms in color fundus images. Walter T; Massin P; Erginay A; Ordonez R; Jeulin C; Klein JC Med Image Anal; 2007 Dec; 11(6):555-66. PubMed ID: 17950655 [TBL] [Abstract][Full Text] [Related]
5. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289 [TBL] [Abstract][Full Text] [Related]
6. Comparing diabetic retinopathy lesions in scanning laser ophthalmoscopy and colour fundus photography. Nghiem AZ; Nderitu P; Lukic M; Khatun M; Largan R; Kortuem K; Balaskas K; Sim D Acta Ophthalmol; 2019 Dec; 97(8):e1035-e1040. PubMed ID: 31286663 [TBL] [Abstract][Full Text] [Related]
7. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography. Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609 [TBL] [Abstract][Full Text] [Related]
8. Automated detection of fundus photographic red lesions in diabetic retinopathy. Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411 [TBL] [Abstract][Full Text] [Related]
9. Computer-assisted microaneurysm turnover in the early stages of diabetic retinopathy. Bernardes R; Nunes S; Pereira I; Torrent T; Rosa A; Coelho D; Cunha-Vaz J Ophthalmologica; 2009; 223(5):284-91. PubMed ID: 19372722 [TBL] [Abstract][Full Text] [Related]
10. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Silva PS; Cavallerano JD; Sun JK; Noble J; Aiello LM; Aiello LP Am J Ophthalmol; 2012 Sep; 154(3):549-559.e2. PubMed ID: 22626617 [TBL] [Abstract][Full Text] [Related]
11. Detection and classification of retinal lesions for grading of diabetic retinopathy. Usman Akram M; Khalid S; Tariq A; Khan SA; Azam F Comput Biol Med; 2014 Feb; 45():161-71. PubMed ID: 24480176 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy. Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404 [TBL] [Abstract][Full Text] [Related]
13. A decision support system for automatic screening of non-proliferative diabetic retinopathy. Reza AW; Eswaran C J Med Syst; 2011 Feb; 35(1):17-24. PubMed ID: 20703589 [TBL] [Abstract][Full Text] [Related]
14. Web-based grading of compressed stereoscopic digital photography versus standard slide film photography for the diagnosis of diabetic retinopathy. Rudnisky CJ; Tennant MT; Weis E; Ting A; Hinz BJ; Greve MD Ophthalmology; 2007 Sep; 114(9):1748-54. PubMed ID: 17368543 [TBL] [Abstract][Full Text] [Related]
16. Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software. Wang XN; Dai L; Li ST; Kong HY; Sheng B; Wu Q Curr Eye Res; 2020 Dec; 45(12):1550-1555. PubMed ID: 32410471 [No Abstract] [Full Text] [Related]
17. Comparison of a digital retinal imaging system and seven-field stereo color fundus photography to detect diabetic retinopathy in the primary care environment. Schiffman RM; Jacobsen G; Nussbaum JJ; Desai UR; Carey JD; Glasser D; Zimmer-Galler IE; Zeimer R; Goldberg MF Ophthalmic Surg Lasers Imaging; 2005; 36(1):46-56. PubMed ID: 15688971 [TBL] [Abstract][Full Text] [Related]
18. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME). Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096 [TBL] [Abstract][Full Text] [Related]
19. Entoptic evaluation of diabetic retinopathy. Applegate RA; Bradley A; van Heuven WA; Lee BL; Garcia CA Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):783-91. PubMed ID: 9112972 [TBL] [Abstract][Full Text] [Related]
20. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology; 1991 May; 98(5 Suppl):786-806. PubMed ID: 2062513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]