BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 15956138)

  • 1. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation.
    Rajamannan NM; Nealis TB; Subramaniam M; Pandya S; Stock SR; Ignatiev CI; Sebo TJ; Rosengart TK; Edwards WD; McCarthy PM; Bonow RO; Spelsberg TC
    Circulation; 2005 Jun; 111(24):3296-301. PubMed ID: 15956138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation.
    Caira FC; Stock SR; Gleason TG; McGee EC; Huang J; Bonow RO; Spelsberg TC; McCarthy PM; Rahimtoola SH; Rajamannan NM
    J Am Coll Cardiol; 2006 Apr; 47(8):1707-12. PubMed ID: 16631011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human aortic valve calcification is associated with an osteoblast phenotype.
    Rajamannan NM; Subramaniam M; Rickard D; Stock SR; Donovan J; Springett M; Orszulak T; Fullerton DA; Tajik AJ; Bonow RO; Spelsberg T
    Circulation; 2003 May; 107(17):2181-4. PubMed ID: 12719282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves.
    Srivatsa SS; Harrity PJ; Maercklein PB; Kleppe L; Veinot J; Edwards WD; Johnson CM; Fitzpatrick LA
    J Clin Invest; 1997 Mar; 99(5):996-1009. PubMed ID: 9062358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imbalance between pro-angiogenic and anti-angiogenic factors in rheumatic and mixomatous mitral valves.
    Mariscalco G; Lorusso R; Sessa F; Bruno VD; Piffaretti G; Banach M; Cattaneo P; Cozzi GP; Sala A
    Int J Cardiol; 2011 Nov; 152(3):337-44. PubMed ID: 20832876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased and inactivated nuclear factor kappa B 1 (p50) in human degenerative calcified aortic valve.
    Wen C; Leiyang Z; Fei D; Yifan Z; Xiao R; Li L; Liang Z; Ganggang M; Zirun L; Xin C
    Cardiovasc Pathol; 2013; 22(1):28-32. PubMed ID: 22464415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma soluble osteopontin concentrations are increased in patients with rheumatic mitral stenosis and associated with the severity of mitral valve calcium.
    Atalar E; Ozturk E; Ozer N; Haznedaroglu IC; Kepez A; Coskun S; Aksoyek S; Ovunc K; Kes S; Kirazli S; Ozmen F
    Am J Cardiol; 2006 Sep; 98(6):817-20. PubMed ID: 16950193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathology and pathogenesis of rheumatic heart disease.
    Chopra P; Gulwani H
    Indian J Pathol Microbiol; 2007 Oct; 50(4):685-97. PubMed ID: 18306530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of surgically removed cardiac valves of patients with ESRD with those of the general population.
    Kajbaf S; Veinot JP; Ha A; Zimmerman D
    Am J Kidney Dis; 2005 Jul; 46(1):86-93. PubMed ID: 15983961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of osteopontin with calcification in human mitral valves.
    Canver CC; Gregory RD; Cooler SD; Voytovich MC
    J Cardiovasc Surg (Torino); 2000 Apr; 41(2):171-4. PubMed ID: 10901517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The calcified aortic valve. A morphologic study].
    Brugger JM; Schneider J
    Schweiz Med Wochenschr; 1986 Jan; 116(2):44-9. PubMed ID: 3945789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic and local levels of fetuin-a in calcified mitral valves of rheumatic heart disease.
    Mukhopadhyay S; Pandit BN; Saran RK; Mazumdar K; Yusuf J; Minhas HS; Trehan V; Tyagi S
    J Heart Valve Dis; 2014 Jan; 23(1):55-65. PubMed ID: 24779329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic rheumatic heart disease in India: a reappraisal of pathologic changes.
    Chopra P; Bhatia ML
    J Heart Valve Dis; 1992 Sep; 1(1):92-101. PubMed ID: 1341228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of bone-regulatory proteins in human valve allografts.
    Shetty R; Pepin A; Charest A; Perron J; Doyle D; Voisine P; Dagenais F; Pibarot P; Mathieu P
    Heart; 2006 Sep; 92(9):1303-8. PubMed ID: 16449517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraleaflet hemorrhages are a common finding in symptomatic aortic and mitral valves.
    Stam OCG; Daemen MJAP; van Rijswijk JW; de Mol BAJM; van der Wal AC
    Cardiovasc Pathol; 2017; 30():12-18. PubMed ID: 28666146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic calcification: new concepts in cellular regulation.
    Giachelli CM
    Z Kardiol; 2001; 90 Suppl 3():31-7. PubMed ID: 11374030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcification and cellularity in human aortic heart valve tissue determine the differentiation of bone-marrow-derived cells.
    Leskelä HV; Satta J; Oiva J; Eriksen H; Juha R; Korkiamäki P; Ivaska KK; Soini Y; Lehenkari P
    J Mol Cell Cardiol; 2006 Oct; 41(4):642-9. PubMed ID: 16938307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves.
    Alexopoulos A; Bravou V; Peroukides S; Kaklamanis L; Varakis J; Alexopoulos D; Papadaki H
    Int J Cardiol; 2010 Mar; 139(2):142-9. PubMed ID: 19019468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone formation and inflammation in cardiac valves.
    Mohler ER; Gannon F; Reynolds C; Zimmerman R; Keane MG; Kaplan FS
    Circulation; 2001 Mar; 103(11):1522-8. PubMed ID: 11257079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atherosclerotic inflammation triggers osteogenic bone transformation in calcified and stenotic human aortic valves: still a matter of debate.
    Anger T; Carson W; Weyand M; Daniel WG; Hoeher M; Garlichs CD
    Exp Mol Pathol; 2009 Feb; 86(1):10-7. PubMed ID: 19084515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.