These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15956320)

  • 41. Microbial rumen fermentation.
    Russell JB; Hespell RB
    J Dairy Sci; 1981 Jun; 64(6):1153-69. PubMed ID: 7024344
    [No Abstract]   [Full Text] [Related]  

  • 42. The use of Prevotella bryantii 3C5 for modulation of the ruminal environment in an ovine model.
    Fraga M; Fernández S; Perelmuter K; Pomiés N; Cajarville C; Zunino P
    Braz J Microbiol; 2018 Nov; 49 Suppl 1(Suppl 1):101-106. PubMed ID: 30181051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Studies of viability and vitality after freezing of the probiotic yeast Saccharomyces boulardii: physiological preconditioning effect].
    Pardo S; Galvagno MA; Cerrutti P
    Rev Iberoam Micol; 2009 Jun; 26(2):155-60. PubMed ID: 19631167
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gas and volatile fatty acid production at different rates of rumen microbial protein synthesis in vitro.
    Naga MA; Harmeyer JH
    J Anim Sci; 1975 Feb; 40(2):374-9. PubMed ID: 234931
    [No Abstract]   [Full Text] [Related]  

  • 45. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.
    Sun P; Li J; Bu D; Nan X; Du H
    Curr Microbiol; 2016 May; 72(5):589-95. PubMed ID: 26821238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep.
    Newbold CJ; Wallace RJ; Chen XB; McIntosh FM
    J Anim Sci; 1995 Jun; 73(6):1811-8. PubMed ID: 7673076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants.
    Newbold CJ; Wallace RJ; McIntosh FM
    Br J Nutr; 1996 Aug; 76(2):249-61. PubMed ID: 8813899
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Different mathematical approaches to estimating microbial protein supply in ruminants.
    Dijkstra J; France J; Davies DR
    J Dairy Sci; 1998 Dec; 81(12):3370-84. PubMed ID: 9891281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterization of yeasts from bovine rumen for potential use as probiotics.
    Fernandes T; Carvalho BF; Mantovani HC; Schwan RF; Ávila CLS
    J Appl Microbiol; 2019 Sep; 127(3):845-855. PubMed ID: 31211890
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ammonia assimilation in rumen bacteria: a review.
    Pengpeng W; Tan Z
    Anim Biotechnol; 2013; 24(2):107-28. PubMed ID: 23534958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two distinct modes of action, namely ab initio and ad finem, of the yeast culture Yea-Sacc on ruminal fermentation in sheep.
    Gray WR; Ryan JP
    Biochem Soc Trans; 1990 Apr; 18(2):349-50. PubMed ID: 2199276
    [No Abstract]   [Full Text] [Related]  

  • 52. Quality control of fifteen probiotic products containing Saccharomyces boulardii.
    Vanhee LM; Goemé F; Nelis HJ; Coenye T
    J Appl Microbiol; 2010 Nov; 109(5):1745-52. PubMed ID: 20636342
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rumen Microbiome, Probiotics, and Fermentation Additives.
    McCann JC; Elolimy AA; Loor JJ
    Vet Clin North Am Food Anim Pract; 2017 Nov; 33(3):539-553. PubMed ID: 28764865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen exchanges in the rumen.
    Demeyer DI; Van Nevel CJ
    Proc Nutr Soc; 1980 Feb; 39(1):89-95. PubMed ID: 6988839
    [No Abstract]   [Full Text] [Related]  

  • 55. Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory.
    Jin Y; Yu S; Liu JJ; Yun EJ; Lee JW; Jin YS; Kim KH
    Microb Cell Fact; 2021 Aug; 20(1):160. PubMed ID: 34407819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of Saccharomyces boulardii with intestinal brush border membranes: key to probiotic effects?
    Buts JP; De Keyser N
    J Pediatr Gastroenterol Nutr; 2010 Oct; 51(4):532-3. PubMed ID: 20706146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of pH conditions on the viability of Saccharomyces boulardii yeast.
    Graff S; Chaumeil JC; Boy P; Lai-Kuen R; Charrueau C
    J Gen Appl Microbiol; 2008 Aug; 54(4):221-7. PubMed ID: 18802321
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro H2 utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae.
    Chaucheyras F; Fonty G; Bertin G; Gouet P
    Appl Environ Microbiol; 1995 Sep; 61(9):3466-7. PubMed ID: 7574654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeasts as probiotics: Mechanisms, outcomes, and future potential.
    Sen S; Mansell TJ
    Fungal Genet Biol; 2020 Apr; 137():103333. PubMed ID: 31923554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast
    Offei B; Vandecruys P; De Graeve S; Foulquié-Moreno MR; Thevelein JM
    Genome Res; 2019 Sep; 29(9):1478-1494. PubMed ID: 31467028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.