These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15956389)

  • 41. Diagnosis of human brucellosis in Egypt by polymerase chain reaction.
    El Kholy AA; Gomaa HE; El Anany MG; Abd El Rasheed E
    East Mediterr Health J; 2009; 15(5):1068-74. PubMed ID: 20214119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RT-PCR and alternative methods to PCR for in vitro amplification of nucleic acids.
    Hagen-Mann K; Mann W
    Exp Clin Endocrinol Diabetes; 1995; 103(3):150-5. PubMed ID: 7584516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A large volume, portable, real-time PCR reactor.
    Qiu X; Mauk MG; Chen D; Liu C; Bau HH
    Lab Chip; 2010 Nov; 10(22):3170-7. PubMed ID: 20927453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid real-time PCR assay for detection and quantitation of Mycobacterium avium subsp. paratuberculosis DNA in artificially contaminated milk.
    O'Mahony J; Hill C
    Appl Environ Microbiol; 2004 Aug; 70(8):4561-8. PubMed ID: 15294786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of PCR in application of hot start Taq DNA polymerase for detection of Erwinia amylovora with primers FER1-F and FER1-R.
    Obradovic D; Kevresan S
    Mikrobiologiia; 2010; 79(6):819-23. PubMed ID: 21446634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica.
    Murphy NM; McLauchlin J; Ohai C; Grant KA
    Int J Food Microbiol; 2007 Nov; 120(1-2):110-9. PubMed ID: 17604864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Influence of reaction optimization on the results of PCR amplification of Panton-Valentine leukocidin genes among Staphylococcus aureus isolates].
    Karahan ZC; Dolapçi I; Tekeli A
    Mikrobiyol Bul; 2009 Oct; 43(4):519-28. PubMed ID: 20084904
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple fluorescence-based PCR-SSCP analysis.
    Iwahana H; Yoshimoto K; Mizusawa N; Kudo E; Itakura M
    Biotechniques; 1994 Feb; 16(2):296-7, 300-5. PubMed ID: 8179893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reagent decontamination to eliminate false-positives in Escherichia coli qPCR.
    Silkie SS; Tolcher MP; Nelson KL
    J Microbiol Methods; 2008 Mar; 72(3):275-82. PubMed ID: 18280599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection and discrimination of WU/KI polyomaviruses by real-time PCR with melting curve analysis.
    Payungporn S; Chieochansin T; Thongmee C; Panjaworayan N; Samransamruajkit R; Theamboolers A; Poovorawan Y
    J Virol Methods; 2008 Oct; 153(1):70-3. PubMed ID: 18639584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Typing of food-borne Listeria monocytogenes by the optimized repetitive extragenic palindrome-based polymerase chain reaction.
    Pangallo D; Karpísková R; Turna J; Kuchta T
    New Microbiol; 2002 Oct; 25(4):449-54. PubMed ID: 12437224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enrichment followed by quantitative PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne thermotolerant campylobacters.
    Josefsen MH; Jacobsen NR; Hoorfar J
    Appl Environ Microbiol; 2004 Jun; 70(6):3588-92. PubMed ID: 15184161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative detection of Legionella pneumophila in water samples by immunomagnetic purification and real-time PCR amplification of the dotA gene.
    Yáñez MA; Carrasco-Serrano C; Barberá VM; Catalán V
    Appl Environ Microbiol; 2005 Jul; 71(7):3433-41. PubMed ID: 16000746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.
    Wong G; Wong I; Chan K; Hsieh Y; Wong S
    PLoS One; 2015; 10(7):e0131701. PubMed ID: 26146999
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method for parallel, automated, thermal cycling of submicroliter samples.
    Nakane J; Broemeling D; Donaldson R; Marziali A; Willis TD; O'Keefe M; Davis RW
    Genome Res; 2001 Mar; 11(3):441-7. PubMed ID: 11230168
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A PCR microreactor machinery with passive micropump and battery-powered heater for thermo-cycled amplifications of clinical-level and multiplexed DNA targets.
    Shi B; He G; Wu W
    Mikrochim Acta; 2018 Sep; 185(10):467. PubMed ID: 30229474
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A closed-cycle capillary polymerase chain reaction machine.
    Chiou J; Matsudaira P; Sonin A; Ehrlich D
    Anal Chem; 2001 May; 73(9):2018-21. PubMed ID: 11354484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated polymerase chain reaction in capillary tubes with hot air.
    Wittwer CT; Fillmore GC; Hillyard DR
    Nucleic Acids Res; 1989 Jun; 17(11):4353-7. PubMed ID: 2740218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Battery-operated portable PCR system with enhanced stability of Pt RTD.
    Lim J; Jeong S; Kim M; Lee JH
    PLoS One; 2019; 14(6):e0218571. PubMed ID: 31247046
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amplification efficiency and thermal stability of qPCR instrumentation: Current landscape and future perspectives.
    Rogers-Broadway KR; Karteris E
    Exp Ther Med; 2015 Oct; 10(4):1261-1264. PubMed ID: 26622475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.