These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 15957744)
1. Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves. Müller TM; Gurevich B J Acoust Soc Am; 2005 May; 117(5):2732-41. PubMed ID: 15957744 [TBL] [Abstract][Full Text] [Related]
2. A first-order statistical smoothing approximation for the coherent wave field in random porous random media. Müller TM; Gurevich B J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):1796-805. PubMed ID: 15898626 [TBL] [Abstract][Full Text] [Related]
3. Prediction of negative dispersion by a nonlocal poroelastic theory. Chakraborty A J Acoust Soc Am; 2008 Jan; 123(1):56-67. PubMed ID: 18177138 [TBL] [Abstract][Full Text] [Related]
4. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models. Mézière F; Muller M; Bossy E; Derode A Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533 [TBL] [Abstract][Full Text] [Related]
5. Fast compressional wave attenuation and dispersion due to conversion scattering into slow shear waves in randomly heterogeneous porous media. Müller TM; Sahay PN J Acoust Soc Am; 2011 May; 129(5):2785-96. PubMed ID: 21568383 [TBL] [Abstract][Full Text] [Related]
6. Compressional wave propagation in saturated porous media and its numerical analysis using a space-time conservation element and solution element method. Yang D Rev Sci Instrum; 2021 Dec; 92(12):125108. PubMed ID: 34972452 [TBL] [Abstract][Full Text] [Related]
7. Stochastic theory of dynamic permeability in poroelastic media. Müller TM; Sahay PN Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026329. PubMed ID: 21929112 [TBL] [Abstract][Full Text] [Related]
9. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid. Santos JE; Savioli GB J Acoust Soc Am; 2015 Nov; 138(5):3033-42. PubMed ID: 26627777 [TBL] [Abstract][Full Text] [Related]
10. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080 [TBL] [Abstract][Full Text] [Related]
11. Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium. Hefner BT; Jackson DR J Acoust Soc Am; 2010 Jun; 127(6):3372-84. PubMed ID: 20550237 [TBL] [Abstract][Full Text] [Related]
12. Fabric dependence of wave propagation in anisotropic porous media. Cowin SC; Cardoso L Biomech Model Mechanobiol; 2011 Feb; 10(1):39-65. PubMed ID: 20461539 [TBL] [Abstract][Full Text] [Related]
13. Influence of water saturation on propagation of elastic waves in transversely isotropic nearly saturated soil. Li BZ; Cai YQ J Zhejiang Univ Sci; 2003; 4(6):694-701. PubMed ID: 14566985 [TBL] [Abstract][Full Text] [Related]
14. Reflection and transmission coefficients of a single layer in poroelastic media. Corredor RM; Santos JE; Gauzellino PM; Carcione JM J Acoust Soc Am; 2014 Jun; 135(6):3151-62. PubMed ID: 24907781 [TBL] [Abstract][Full Text] [Related]
15. Analysis of multiscale scattering and poroelastic attenuation in a real sedimentary rock sequence. Hackert CL; Parra JO J Acoust Soc Am; 2000 Jun; 107(6):3028-34. PubMed ID: 10875348 [TBL] [Abstract][Full Text] [Related]
16. Modeling of wave dispersion along cylindrical structures using the spectral method. Karpfinger F; Gurevich B; Bakulin A J Acoust Soc Am; 2008 Aug; 124(2):859-65. PubMed ID: 18681578 [TBL] [Abstract][Full Text] [Related]
17. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes. Krödel S; Palermo A; Daraio C J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686 [TBL] [Abstract][Full Text] [Related]
18. Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with nonzero boundary slip velocity. Tsiklauri D J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):843-9. PubMed ID: 12243170 [TBL] [Abstract][Full Text] [Related]
19. An alternative Biot's displacement formulation for porous materials. Dazel O; Brouard B; Depollier C; Griffiths S J Acoust Soc Am; 2007 Jun; 121(6):3509-16. PubMed ID: 17552703 [TBL] [Abstract][Full Text] [Related]