These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15957746)

  • 1. Contactless micromanipulation of small particles by an ultrasound field excited by a vibrating body.
    Haake A; Dual J
    J Acoust Soc Am; 2005 May; 117(5):2752-60. PubMed ID: 15957746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positioning of small particles by an ultrasound field excited by surface waves.
    Haake A; Dual J
    Ultrasonics; 2004 Apr; 42(1-9):75-80. PubMed ID: 15047264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound.
    Oberti S; Neild A; Dual J
    J Acoust Soc Am; 2007 Feb; 121(2):778-85. PubMed ID: 17348502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positioning, displacement, and localization of cells using ultrasonic forces.
    Haake A; Neild A; Radziwill G; Dual J
    Biotechnol Bioeng; 2005 Oct; 92(1):8-14. PubMed ID: 16094668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactless and non-invasive delivery of micro-particles lying on a non-customized rigid surface by using acoustic radiation force.
    Meng J; Mei D; Jia K; Fan Z; Yang K
    Ultrasonics; 2014 Jul; 54(5):1350-7. PubMed ID: 24568691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contactless methodology of picking up micro-particles from rigid surfaces by acoustic radiation force.
    Jia K; Yang K; Fan Z; Ju BF
    Rev Sci Instrum; 2012 Jan; 83(1):014902. PubMed ID: 22299974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of cells using an ultrasonic pressure field.
    Haake A; Neild A; Kim DH; Ihm JE; Sun Y; Dual J; Ju BK
    Ultrasound Med Biol; 2005 Jun; 31(6):857-64. PubMed ID: 15936501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of acoustic radiation forces to position particles within fluid droplets.
    Oberti S; Neild A; Quach R; Dual J
    Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contactless Acoustic Manipulation and Sorting of Particles by Dynamic Acoustic Fields.
    Andrade MAB; Drosos Skotis G; Ritchie S; Cumming DRS; Riehle MO; Bernassau AL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1593-1600. PubMed ID: 28113660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics.
    Miao X; Wilson BK; Pun SH; Lin LY
    Opt Express; 2008 Sep; 16(18):13517-25. PubMed ID: 18772960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic manipulation of particles in a cylindrical cavity: Theoretical and experimental study on the effects of boundary conditions.
    Xu D; Cai F; Chen M; Li F; Wang C; Meng L; Xu D; Wang W; Wu J; Zheng H
    Ultrasonics; 2019 Mar; 93():18-25. PubMed ID: 30384006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes.
    Schwarz T; Petit-Pierre G; Dual J
    J Acoust Soc Am; 2013 Mar; 133(3):1260-8. PubMed ID: 23463999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.
    Karlsen JT; Bruus H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043010. PubMed ID: 26565335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative Micromanipulation Using the Independent Actuation of Fifty Microrobots in Parallel.
    Rahman MA; Cheng J; Wang Z; Ohta AT
    Sci Rep; 2017 Jun; 7(1):3278. PubMed ID: 28607359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.